Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Nguyên Đại Thắng
Xem chi tiết
Phương huyền
Xem chi tiết
Gaming DemonYT
21 tháng 2 2021 lúc 14:58

Đáp án:

AD+BC

=ED-EA+EC-EB

=(ED+EC)-(EA+EB) (1)

Mà E là trung điểm của AB=> EA+EB=0

(1)=2EF (F là trung điểm DC)

Lê Hà Ny
Xem chi tiết

E trên trục hoành nên E(x;0)

A(6;3); B(-3;6); E(x;0)

\(\overrightarrow{AB}=\left(-9;3\right);\overrightarrow{AE}=\left(x-6;-3\right)\)

Để A,B,E thẳng hàng thì \(\dfrac{x-6}{-9}=\dfrac{-3}{3}=-1\)

=>x-6=9

=>x=15

Vậy: E(15;0)

Do E thuộc trục hoành nên tọa độ có dạng \(E\left(x;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AE}=\left(x-6;-3\right)\end{matrix}\right.\)

3 điểm A, B, E thẳng hàng khi:

\(\dfrac{x-6}{-9}=\dfrac{-3}{3}\Rightarrow x-6=9\)

\(\Rightarrow x=15\Rightarrow E\left(15;0\right)\)

Thầy Cao Đô
Xem chi tiết
Hoang Hai Nam
27 tháng 4 2022 lúc 10:54

0

Phạm Thanh Thu
30 tháng 4 2022 lúc 22:04

 

a) Ta có {AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD){AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD).

b) Ta có {BC⊥ABBC⊥SA⇒BC⊥(SAB){BC⊥ABBC⊥SA⇒BC⊥(SAB).

Suy ra góc giữa SCSC và (SAB)(SAB) là góc ˆCSBCSB^.

Xét tam giác SABSAB vuông tại AA có SB=√AB2+SA2=a√3SB=AB2+SA2=a3. tanˆCSB=CBSB=aa√3=1√3⇒ˆCSB=30∘tan⁡CSB^=CBSB=aa3=13⇒CSB^=30∘.

Vậy ˆ(SC,(SAB))=30∘(SC,(SAB))^=30∘

c) Gọi MMlà trung điểm ADAD.

Suy ra ABCMABCM là hình vuông và CM=AB=aCM=AB=a.

Suy ra CM=12ADCM=12AD nên ΔACDΔACD vuông tại CC hay AC⊥CDAC⊥CD.

Ta có {CD⊥ACCD⊥SA⇒CD⊥(SAC){CD⊥ACCD⊥SA⇒CD⊥(SAC).

Kẻ AK⊥SC (K∈SC)AK⊥SC (K∈SC)

⇒AK⊥(SCD)⇒d(A,(SCD))=AK⇒AK⊥(SCD)⇒d(A,(SCD))=AK.

AC=√AB2+BC2=a√2AC=AB2+BC2=a2.

Do đó d(A,(SCD))=AK=SA.AC√SA2+AC2=ad(A,(SCD))=AK=SA.ACSA2+AC2=a. (∗)(∗)

Trong (ABCD)(ABCD), gọi {E}=AB∩CD{E}=AB∩CD.

Ta có ⎧⎨⎩BC//ADBC=12AD{BC//ADBC=12AD nên BCBC là đường trung bình của ΔEADΔEAD.

⇒SB⇒SB là đường trung tuyến của ΔSAEΔSAE. (1)(1)

Mặt khác, tam giác ΔSAEΔSAE vuông tại AA có chiều cao AHAH cho ta SH.SB=SA2 ⇒ SHSB=SA2SB2=23SH.SB=SA2 ⇒ SHSB=SA2SB2=23 (2)(2)

Từ (1)(1) và (2)(2) suy ra HH là trọng tâm tam giác ΔSAEΔSAE.

Trong (SAE)(SAE), gọi {L}=AH∩SE⇒⎧⎨⎩AH∩(SCD)={L}LHLA=13{L}=AH∩SE⇒{AH∩(SCD)={L}LHLA=13.

⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗)⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗).

Từ (∗)(∗) và (∗∗)(∗∗) suy ra d(H,(SCD))=a3d(H,(SCD))=a3.

Vũ Quang Huy
29 tháng 3 2023 lúc 20:23

mu

Xem chi tiết
BOY Free Fire 2
5 tháng 1 2020 lúc 17:00

Goi 3 canh cua tam giac la a,b,c . Goi a bang x

ta co :

4a/2=12b/2=xc/2=S

suy ra a=2 ; b=6 ; 2S/x. Do x-y [bat dang thuc trong tam giac]

suy ra S/2-S/6<2S ma x<2S/3.Ma x thuoc Z

suy ra x=4,5

Khách vãng lai đã xóa
BOY Free Fire 2
5 tháng 1 2020 lúc 19:17

{CAU 2 } xet thay h 4 so la so am

suy ra co 1 hoac 3 so la so am trong h do

xet tung truong hop ta co:

+ co 1 so am

[x mu 2] - 10< [x mu 2] -7 suy ra [x mu 2] - 10 <0 < [x mu hai] -7

suy ra 7<[x mu2]<10 suy ra [x mu 2] = 9 suy ra x= 3 hoac -3 


+co 3 so am 1 so duong 

[x mu 2] - 4<[x mu 2 ] -1 <[ x mu 2] <4

suy ra khong co gia tri thoa man

Vay x=3;-3

Khách vãng lai đã xóa
BOY Free Fire 2
5 tháng 1 2020 lúc 19:48

anh lam song roi day ny

Khách vãng lai đã xóa
Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
21 tháng 5 2023 lúc 10:23

Câu 2: pt đã cho \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)

\(\Leftrightarrow2x^3-6x^2-6x-8=0\)

\(\Leftrightarrow x^2-3x^2-3x-4=0\)

\(\Leftrightarrow\left(x-1\right)^3-6\left(x-1\right)-9=0\) (*)

Đặt  \(x-1=t\) thì (*) trở thành \(t^3-6t-9=0\) 

\(\Leftrightarrow t^3-9t+3t-9=0\)

\(\Leftrightarrow t\left(t^2-9\right)+3\left(t-3\right)=0\)

\(\Leftrightarrow\left(t-3\right)\left(t^2+3t\right)+3\left(t-3\right)=0\)

\(\Leftrightarrow\left(t-3\right)\left(t^3+3t+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t^2+3t+3=0\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x-1=3\) 

\(\Leftrightarrow x=4\)

Vậy pt đã cho có nghiệm \(x=4\)

 

Nguyễn thành Đạt
21 tháng 5 2023 lúc 14:54

bài đấy thì em làm được rồi á. Chỉ là em đăng lên xem còn cách nào giải hay hơn thôi ạ...

nini
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2023 lúc 18:42

Câu 1:

\(A=\left(2\sqrt{3}+4\cdot\sqrt{27}-\sqrt{108}\right):2\sqrt{3}\)

\(=\dfrac{\left(2\sqrt{3}+4\cdot3\sqrt{3}-6\sqrt{3}\right)}{2\sqrt{3}}\)

\(=\dfrac{2\sqrt{3}+12\sqrt{3}-6\sqrt{3}}{2\sqrt{3}}=\dfrac{8\sqrt{3}}{2\sqrt{3}}=4\)

\(B=\sqrt{9+4\sqrt{5}}-2\left(\sqrt{5}+1\right)\)

\(=\sqrt{5+2\cdot\sqrt{5}\cdot2+4}-2\left(\sqrt{5}+1\right)\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-2\left(\sqrt{5}+1\right)\)

\(=\sqrt{5}+2-2\sqrt{5}-2=-\sqrt{5}\)

Câu 2:

a: loading...

b: Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}x+2=-x+4\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2=3\end{matrix}\right.\)

Thay x=1 và y=3 vào (d3), ta được:

\(m\cdot1+m=3\)

=>2m=3

=>\(m=\dfrac{3}{2}\)

Câu 4:

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)

=>CMON là hình chữ nhật

b: Ta có: ΔCAB vuông tại C

=>CA\(\perp\)CB tại C

=>AC\(\perp\)EB tại C

Xét ΔAEB vuông tại A có AC là đường cao

nên \(EC\cdot CB=AC^2\left(1\right)\)

Xét ΔCAB vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(EC\cdot CB=AH\cdot AB\)

c: Ta có: ΔOAC cân tại O

mà OM là đường cao

nên OM là phân giác của góc AOC

Xét ΔOAI và ΔOCI có

OA=OC

\(\widehat{AOI}=\widehat{COI}\)

OI chung

Do đó: ΔOAI=ΔOCI

=>\(\widehat{OAI}=\widehat{OCI}=90^0\)

Ta có: ΔOBC cân tại O

mà ON là đường cao

nên ON là phân giác của góc COB

Xét ΔOBF và ΔOCF có

OB=OC

\(\widehat{BOF}=\widehat{COF}\)

OF chung

Do đó: ΔOBF=ΔOCF

=>\(\widehat{OBF}=\widehat{OCF}=90^0\)

Ta có: \(\widehat{ICF}=\widehat{ICO}+\widehat{FCO}\)

\(=90^0+90^0=180^0\)

=>I,C,F thẳng hàng

=>OC\(\perp\)IF tại C

Xét (O) có

OC là bán kính

IF\(\perp\)OC tại O

Do đó: IF là tiếp tuyến của (O)

Kinder
Xem chi tiết
nguyen thi vang
10 tháng 2 2021 lúc 0:05

\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{AE}=\left(a+1;b+2\right)\) mà E di động trên đường thẳng AB nên A,B,E thẳng hàng tương đương với \(\dfrac{a+1}{4}=\dfrac{b+2}{4}\) <=> \(a=b+1\).Vậy E(b+1;b)

Đặt \(\overrightarrow{u}=2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\) => \(\overrightarrow{u}=\left(-1-4b;3-4b\right)\)

có : \(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|=\left|\overrightarrow{u}\right|=\sqrt{\left(-1-4b\right)^2+\left(3-4b^2\right)}\)

Đặt : 1-4b = t => \(\left\{{}\begin{matrix}-1-4b=t-2\\3-4b=t+2\end{matrix}\right.\) khi đó \(\left|\overrightarrow{u}\right|=\sqrt{\left(t-2\right)^2+\left(t+2\right)^2}=\sqrt{2t^2+8}\ge2\sqrt{2}\)

\(\left|2\overrightarrow{EA}+3\overrightarrow{EB}-\overrightarrow{EC}\right|\)đạt GTNN khi và chỉ khi t =0 <=> b=1/4 => a=5/4

vậy \(a^2-b^2=\dfrac{3}{2}\)

Lê Ngọc Bảo Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 22:03

Chọn D