\(\dfrac{2-x}{3}=56\)
tính x
\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}-\dfrac{x-60}{56}-\dfrac{x-60}{55}-\dfrac{x-60}{54}=0\)
\(\Leftrightarrow x-60=0\)
hay x=60
Tìm x:
a) \(\dfrac{-3}{7}\).x=\(\dfrac{3}{56}\).\(\dfrac{28}{9}\)
b) x-\(\dfrac{3}{16}\)=\(\dfrac{7}{15}\):\(\dfrac{3}{5}\)
c) \(\dfrac{2}{5}\)+\(\dfrac{1}{5}\).x=\(\dfrac{5}{6}\)
d) \(\dfrac{3}{4}\)x-\(\dfrac{2}{5}\)x=\(\dfrac{3}{7}\).\(\dfrac{1}{6}\)+\(\dfrac{5}{7}\).\(\dfrac{1}{6}\)
*Lưu ý: Trình bày chi tiết kết quả.
a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)
b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)
c)\(x=\left(\dfrac{5}{6}-\dfrac{2}{5}\right).5=\dfrac{13}{6}\)
d)\(=>x\left(\dfrac{3}{4}-\dfrac{2}{5}\right)=\dfrac{1}{6}\cdot\left(\dfrac{3}{7}+\dfrac{5}{7}\right)\)
\(x\cdot\dfrac{7}{20}=\dfrac{4}{21}=>x=\dfrac{4}{21}\cdot\dfrac{20}{7}=\dfrac{80}{147}\)
\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\Leftrightarrow\dfrac{x-1}{59}-1+\dfrac{x-2}{58}-1+\dfrac{x-3}{57}=\dfrac{x-4}{56}-1+\dfrac{x-5}{55}-1+\dfrac{x-6}{54}-1\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}=\dfrac{x-60}{56}+\dfrac{x-60}{55}+\dfrac{x-60}{54}\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}-\dfrac{1}{54}\right)=0\)
\(\Leftrightarrow x-60=0\)
\(\Rightarrow x=60\)
vậy \(S=\left\{60\right\}\)
Tìm x biết:
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
\(\Leftrightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\dfrac{x+1}{58}+1+\dfrac{x+2}{57}+1=\dfrac{x+3}{56}+1+\dfrac{x+4}{55}+1\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}=\dfrac{x+59}{56}+\dfrac{x+59}{55}\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
Mà \(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\ne0\)
\(\Rightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
Vậy: \(S=\left\{-59\right\}\)
Giải
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
⇔\(\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
⇔\(\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
⇔\(\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
⇔\(x+59=0\)
⇔\(x=-59\)
Cho 2 số dương x,y thỏa mãn x+y≥5
Tìm GTNN của biểu thức
A= \(18x+\dfrac{56}{3}y+\dfrac{4}{x}+\dfrac{15}{y}\)
Min của A là 99 khi (x;y)=(2;3).
Chúc abh học tốt.
\(A=\left(x+\dfrac{4}{x}\right)+5\left(\dfrac{y}{3}+\dfrac{3}{y}\right)+17\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{4x}{x}}+5.2\sqrt{\dfrac{3y}{3y}}+17.5=99\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)
\(\dfrac{-3}{7}\) x = \(\dfrac{3}{56}\).\(\dfrac{28}{9}\) Tìm x
\(\dfrac{-3}{7}\)x=\(\dfrac{1}{6}\)
x=\(\dfrac{1}{6}\):\(\dfrac{-3}{7}\)
x=\(\dfrac{7}{-18}\)
\(2x=3y;4y=5z\) và \(2x+3y-4z=56\)
\(\dfrac{x}{3}=\dfrac{y}{7};\dfrac{y}{2}=\dfrac{z}{5}\) và x + y + z = \(-10\)
1. \(\left(y+\dfrac{1}{3}\right)\)+\(\left(y+\dfrac{1}{9}\right)\)+\(\left(y+\dfrac{1}{27}\right)\)+\(\left(y+\dfrac{1}{81}\right)\)=\(\dfrac{56}{81}\)
2. 18:\(\dfrac{Xx0,4+0,32}{X}\)+5=14
3. \(\dfrac{3xX}{2}\)=\(\dfrac{2}{5}+\)X\(+\dfrac{1}{3}\)
4. X-\(\dfrac{11}{15}\)=\(\dfrac{3+X}{5}\)
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
Bài 3:
$\frac{3\times x}{2}=\frac{2}{5}+x+\frac{1}{3}$
$1,5\times x=x+\frac{11}{15}$
$1,5\times x-x=\frac{11}{15}$
$x\times (1,5-1)=\frac{11}{15}$
$x\times 0,5=\frac{11}{15}$
$x=\frac{11}{15}: 0,5=\frac{22}{15}$
Tìm x, y, z biết:
\(\dfrac{1}{x-1}=\dfrac{2}{y-2}=\dfrac{3}{z-3}\) và \(x+2y+3z=56\)
Giải:
Ta có: \(\dfrac{1}{x-1}=\dfrac{2}{y-2}=\dfrac{3}{z-3}\Leftrightarrow\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z-3}{3}\)
Đặt \(\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z-3}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=k+1\\y=2k+2\\z=3k+3\end{matrix}\right.\)
Mà \(x+2y+3z=56\)
\(\Leftrightarrow k+1+4k+4+9k+9=56\)
\(\Leftrightarrow14k=42\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=8\\z=12\end{matrix}\right.\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(4;8;12\right)\)