Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Kiều Vũ Linh
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Lan Hương
Xem chi tiết
Trần Minh Hoàng
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

Nguyễn Khánh Ngoc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 2 2019 lúc 18:05

Edogawa Conan
Xem chi tiết
Trần Thị Thịnh
Xem chi tiết
Huỳnh Thị Bích Tuyền
27 tháng 5 2015 lúc 19:20

Ta có : \(1^n+2^n+3^n+4^n=10^n\) chia hết cho 5

Cũng biết, 5 chia hết cho các số có tận cùng = 0;5 .

Mà \(10^n\)có số tận cùng là 0 (vd: 105=100 000 ; 106=10 00 000..v...v) và n không chia hết cho 4(\(n\in N\)) nên sẽ chia hết cho 5

Vậy \(1^n+2^n+3^n+4^n\)chia hết cho 5 .

 

 

Nguyễn Triệu Yến Nhi
27 tháng 5 2015 lúc 23:13

 

+) Với n=4k+3 hoặc n=4k+1 => 1n+2n+3n+4n lẻ. k \(\in\)|N.

1n+2n+3n+4n đồng đư với 1n+2n+(-2)n+(-1)(mod 5) hay 1n+2n+3n+4n đồng đư với 1n+2n-2n-1n=0 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k+2, k\(\in\)|N.

1+24k+2+34k+2+44k+2=1+22.24k+32.34k+42.44k

                                  =1+4.16k+9.81k+16.256k

                 đồng dư với : 1.1+4.1+9.1+16.1=30 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k, k\(\in\)|N.

1n+2n+3n+4n = 1+24k+34k+44k

                      = 1+16k+81k+16k

       đồng dư với: 1+1+1+1=4 (mod 5)

=> 1n+2n+3n+4n không chia hết cho 5.

=> ĐPCM

Tao Ghét Mày
28 tháng 5 2015 lúc 20:56

Nguyễn Triệu Yến Nhi đúng rồi

Huỳnh Thiên Tân
Xem chi tiết
Cô Hoàng Huyền
22 tháng 1 2018 lúc 9:01

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.

??A??
Xem chi tiết
Như Phương
5 tháng 3 2020 lúc 21:55

A = 3 + 32 + ...... + 360

A = ( 3 + 32 ) + .....(359 + 360 )

A = ( 3 + 32 ) + ........+ 358 . ( 3 + 32 )

A = 12 + ....... + 358 . 12

A = 12 . ( 1+ ....... + 358 ) : 4 ( đpcm )

Khách vãng lai đã xóa
Trần Ngoc an
5 tháng 3 2020 lúc 22:01

Nguyễn Hiền Minh mik la chu nick do ( nhug no bi mat vi quen luu ) nen mik cam on bn :V

Khách vãng lai đã xóa
Như Phương
5 tháng 3 2020 lúc 22:12

làm ý b nha

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Mới vô
18 tháng 5 2017 lúc 11:21

\(A=n^2+n+1\left(n\in N\right)\\ A=n\cdot n+n\cdot1+1\\ A=n\cdot\left(n+1\right)+1\)

a) Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp, sẽ có một trong hai số là số chẵn \(\Rightarrow n\cdot\left(n+1\right)⋮2\)

\(1⋮̸2\) \(\Rightarrow n\cdot\left(n+1\right)+1⋮̸2\Leftrightarrow A⋮̸2\)

Vậy \(A⋮̸2\)

b)

Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp có chữ số tận cùng là 0, 2, 6 \(\Rightarrow\) \(n\cdot\left(n+1\right)+1\) có chữ số tận cùng là 1, 3, 7 không chia hết chia 5

Vậy \(A⋮̸5\)

Tuyết Nhi Melody
18 tháng 5 2017 lúc 11:30

\(A=n^2+n+1=n\left(n+1\right)+1\left(n\in N\right)\)

a) Vì n và n+1 là 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp sẽ có một số chẵn .

=> n(n+1) là số chẵn

=> n(n+1) + 1 là số lẻ

=> A không chia hết cho 2 ( đpcm )

b) Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=> n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9

=> n(n+1) có thể có tận cùng là 0;2;6

=> n(n+1)+1 có tận cùng là 1;3;7

Vậy A không chia hết cho 5 ( đpcm)

Duong Tran Nhat
31 tháng 5 2017 lúc 16:23

A=n.n+n.1+1

A=n.(n+1)+1(đây là bước nhân một tổng với 1 số của cấp 1)

a, Ta có:

n.(n+1) là tích của 2 số tự nhiên liên tiếp ( 1 chẵn và 1 lẻ ).

=> Ta được: n.(n+1)+1:2

Mà 1 lại không chia được cho 2.

Như vậy n.(n+1)+1 không chia hết cho 2=A không chia hết cho 2.

b,Ta có: n.(n+1) là tích của 2 số tự nhiên có chữ số tận cùng là 0,2,6.

Sau khi cộng thêm 1 thì tích đó có các trường hợp chữ số tận cùng như sau :

-Cs cuối của tích là 0+1=1, sẽ không chia hết cho 5.

-Cs cuối của tích là 2+1=3, sẽ không chia hết cho 5.

-Cs cuối của tích là 6+1=7, không chia hết cho 5.

=> A không chia hết cho 5.

Ủng hộ mình nha