2...2...2 = 2
2..2...2 = 3
2...2...2 = 4
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Bài 2: Thực hiện phép tính (tính hợp lí nếu có thể) a, 4 . 52 – 18 : 32 b, 32. 22 - 32 . 19 c, 24 . 5 - [131- (13 - 4)2] d, 100: {250 : [450 - (4 . 53 – 22 . 25)]} e, 23 . 15 – [115 - (12 - 5)2] f, 30.{175 : [355 - (135 + 37 . 5)]} g, 5871: [928 – ( 247 - 82) . 5] + 21750 |
Đáp Án
a)52:4x3+2x52
=13x3+2x52
=39+104
=143
b)5x42-18:32
=100-0.5625
=99.4375
của bạn nha
2/22 +2/32 + 2/42+...+2/1002 < 2
Cho: \(A=\dfrac{2}{2^2}+\dfrac{2}{3^2}+\dfrac{2}{4^2}+....+\dfrac{2}{100^2}\)
\(A=2\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)\)
Và cho \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
Mà:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
....
\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
Nên: \(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\)
\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow B< 1-\dfrac{1}{100}\)
\(\Rightarrow B< \dfrac{99}{100}\)
Mà: \(\dfrac{99}{100}< 1\) (tử nhỏ hơn mẫu)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
\(\Rightarrow A=2\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..+\dfrac{1}{100^2}\right)< 2\) (đpcm)
\(\dfrac{2}{2^2}+\dfrac{2}{3^2}+\dfrac{2}{4^2}+...+\dfrac{2}{100^2}\)
\(=2\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)\)
mà \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
\(\Rightarrow dpcm\)
Cho (S): x - 1 2 + y + 2 2 + z - 3 2 = 4 và A(2; -1; 2); B(1; 0; 4). Khi đó:
A. (S) và đường thẳng AB tiếp xúc.
B. Đường thẳng AB đi qua tâm (S).
C. Đường thẳng AB không cắt (S).
D. Đoạn AB và (S) có đúng 1 điểm chung
Cho S : x - 1 2 + y + 2 2 + z - 3 2 = 4 và A(2; -1; 2); B(1; 0; 4). Khi đó:
![]()
![]()
![]()
![]()
S=1+\(\dfrac{1}{1-2}\)+\(\dfrac{1}{1-2+3}\)+...+\(\dfrac{1}{1-2+3-4+...+n}\)
và
S=12-22+32-42+...+n2
Tính tổng các số sau :
A = 2 + 22 + 222 +...+ 22...2 (22 chữ số 2)
B = 32 + 322 + 3222 +...+ 322...2 ( 22 chữ số 2)
vui lòng giải giúp mình nha, mình cảm ơn nhiều
.
a: A=2/9(9+99+...+99..99)
=2/9(10-1+10^2-1+...+10^22-1)
=2/9[10+10^2+...+10^22-22]
Đặt B=10+10^2+...+10^22
=>10B=10^2+10^3+...+10^23
=>B=(10^23-10)/9
=>\(A=\dfrac{2}{9}\cdot\left(\dfrac{10^{23}-10}{9}-22\right)\)
=>\(A=\dfrac{2\cdot10^{23}-416}{81}\)
Tính
1) (- 2) . (- 7) . (- 5) 2) 15 – 22 + ( - 17)
3) 25. (- 4) – 20. (- 5) 4) 185 – (49 + 185)
5) ( -19 ) . (- 13) + 13 . (-29)
6)79 . 23 + 21 . 23 7) 2. ( 6 . 42 – 85 : 5)
8) (-5) .8 . (-2) . 3 9) 200 +32 –( 50 +32 )
10) 3 . (-2)2 + 4 . (-5) +20
Thực hiện phép tính (tính nhanh nếu có thể)
a)3 . 52 + 15 . 22 - 26 : 2
b)53. 2 - 100 : 4 + 23. 5
c)62 : 9 + 50 . 2 - 33 . 33
d)32 . 5 + 23 . 10 - 81 : 3
e)513 : 510 - 25 . 22
f)20 : 22 + 59 : 58
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
A 2+22+....+219+220
B 2+22+....+299+2100
C 3+32+.....+39+310
a: 2A=2^2+2^3+...+2^21
=>A=2^21-2
b: B=2+2^2+...+2^100
=>2B=2^2+2^3+...+2^101
=>B=2^101-2
c: C=3+3^2+...+3^10
=>3C=3^2+3^3+...+3^11
=>2C=3^11-3
=>C=(3^11-3)/2
`A = 2 + 2^2 + ... + 2^20`
`=> 2A = 2^2 + 2^3 + ... +2^21`
`=> 2A-A = (2^2 + 2^3 + ... + 2^21) - (2 + 2^2 + ... +2^20)`
`=> A = 2^21 - 2`
`B = 2 + 2^2 + ... + 2^99 + 2^100`
`=>2B = 2^2 + 2^3 + ... + 2^100 + 2^101`
`=> 2B-B = (2^2 + 2^3 + ... + 2^101)- (2 + 2^2 + ... + 2^100)`
`=> B = 2^101 - 2`
`C = 3 + 3^2 + .... + 3^10`
`=>3C = 3^2 + 3^3 + ... +3^11`
`=>3C - C = (3^2 + 3^3 + ... +3^11) - (3 + 3^2 + .... + 3^10)`
`=> 2C = 3^11 - 3`
`=> C = (3^11 - 3)/2