Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 18:55

loading...  loading...  loading...  

Đoàn Minh Huy
Xem chi tiết
Nguyễn Thị Huyền Anh
Xem chi tiết
Phạm Tâm Đức
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 18:06

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)

Lê Trần Quỳnh Anh
Xem chi tiết
_ɦყυ_
24 tháng 7 2020 lúc 21:17

Ta chứng minh chiều nghịch:

Khi tam giác ABC đều, góc A=gócB=gócC=60*

Khi đó cosA+cosB+cosC=3/2(đpcm)

Ta chứng minh chiều thuận

Ta chứng minh cosA+cosB+cosC≤3/2

Thật vậy:

 Mà theo gt, cosA+cosB+cosC=3/2

nên ta có tam giác ABC đều(đpcm)

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 7 2020 lúc 21:20

A B C D E F

vẽ AD,BE, CF là các đường cao của tam giác ABC

\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)

ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)

tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)

do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)

\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)

\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)

do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
24 tháng 7 2020 lúc 21:49

Cách khác khỏi phải dùng hình học :v

\(A=\cos A+\cos B+\cos C\)

\(=\left(\cos A+\cos B\right)\cdot1+\sin A\cdot\sin B-\cos A\cdot\cos B\)

\(\le\frac{1}{2}\left[\left(\cos A+\cos B\right)^2+1\right]+\frac{1}{2}\left(\sin^2A+\sin^2B\right)-\cos A\cdot\cos B\)

\(=\frac{1}{2}\left(\cos^2A+\sin^2A+\cos^2B+\sin^2B\right)+\frac{1}{2}\)

\(=\frac{3}{2}\)

ez Problem :v

Khách vãng lai đã xóa
Đặng Thảo Chi
Xem chi tiết
Trương Võ Thanh Ngân
Xem chi tiết
Diệu Huyền
25 tháng 9 2019 lúc 19:28

Tham khảo nha !!!Untitled.png

undefined

White Boy
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 10 2016 lúc 11:38

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

phan tuấn anh
Xem chi tiết
alibaba nguyễn
15 tháng 4 2017 lúc 21:28

Ta có bất phương trình tương đương:

\(\Leftrightarrow x-2\left(\cos B+\cos C\right)x+2-2\cos A\ge0\)

Ta có:

\(\Delta'=\left(\cos B+\cos C\right)^2-2+2\cos A\)

\(=4\cos^2\left(\frac{B+C}{2}\right).\cos^2\left(\frac{B-C}{2}\right)-4\sin^2\left(\frac{A}{2}\right)\)

 \(=4\sin^2\left(\frac{A}{2}\right)\left(\cos^2\left(\frac{B-C}{2}\right)-1\right)\le0\)

Bên cạnh đó ta có hệ số \(a=1>0\)

Từ đây ta suy ra điều phải chứng minh là đúng.