tách hộ tớ vs: -4\(\sqrt{ }\)a-8
có ai biết giải bài này k giải hộ mình vs ( giải chi tiết hộ mình nhé)
1, \(\sqrt{9+4\sqrt{5}-\sqrt{9-4\sqrt{5}}}\)
2, \(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}\)
Lần sau bạn chú ý viết đầy đủ đề.
1.
\(\sqrt{9+4\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{9+4\sqrt{5}-\sqrt{5-2\sqrt{4.5}+4}}\)
\(=\sqrt{9+4\sqrt{5}-\sqrt{(\sqrt{5}-\sqrt{4})^2}}=\sqrt{9+4\sqrt{5}-(\sqrt{5}-\sqrt{4})}\)
\(=\sqrt{9+4\sqrt{5}-\sqrt{5}+2}=\sqrt{11+3\sqrt{5}}\)
2.
\(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}=\sqrt{8-2\sqrt{7}-\sqrt{7+2\sqrt{7}+1}}\)
\(=\sqrt{8-2\sqrt{7}-\sqrt{(\sqrt{7}+1)^2}}\)
\(=\sqrt{8-2\sqrt{7}-\sqrt{7}-1}=\sqrt{7-3\sqrt{7}}\)
Phạm Mạnh Kiên: sửa lại theo ý bạn thì làm như sau:
1.
\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{5+2\sqrt{5}.\sqrt{4}+4}-\sqrt{5-2\sqrt{5}.\sqrt{4}+4}\)
\(=\sqrt{(\sqrt{5}+\sqrt{4})^2}-\sqrt{(\sqrt{5}-\sqrt{4})^2}=|\sqrt{5}+2|-|\sqrt{5}-2|\)
\(=\sqrt{5}+2-(\sqrt{5}-2)=4\)
2.
\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}=|\sqrt{7}-1|-|\sqrt{7}+1|\)
\(=-2\)
\(\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{3-2\sqrt{2}}}}\)
Rút gọn hộ mik vs <:
\(\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{3-2\sqrt{2}}}}=\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{\left(\sqrt{2}-1\right)^2}}}=\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{2}+8}}=\sqrt{4\sqrt{2}+4\sqrt{18-8\sqrt{2}}}=\sqrt{4\sqrt{2}+4\sqrt{\left(4-\sqrt{2}\right)^2}}=\sqrt{4\sqrt{2}+16-4\sqrt{2}}=\sqrt{16}=4\)
\(\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{10-8\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{4\sqrt{2}+4\cdot\sqrt{18-8\sqrt{2}}}\)
\(=\sqrt{4\sqrt{2}+4\left(4-\sqrt{2}\right)}\)
=4
2√x-3x+4. Tách hộ mik vs
có ai biết giải bài này k hộ mình vs ( giải chi tiết hộ mình nhé)
1, \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
2, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
3, \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}\)
4, \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)
2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)
\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)
\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)
tổng các nghiệm pt\(\sqrt{3x+7}-\sqrt{x +1}=2\)
giải ra hộ tớ vs ạ
\(\sqrt{3x+7}-\sqrt{x-1}=3\)
Đkxđ:\(\left\{{}\begin{matrix}3x+7\ge0\\x+1\ge0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}x\ge-\frac{7}{3}\\x\ge-1\end{matrix}\right.\rightarrow x\ge-1\)
\(PT\rightarrow\sqrt{3x+7}=2+\sqrt{x+1}\)
\(\Rightarrow3x+7=\left(2+\sqrt{x+1}\right)^2\)
\(\Rightarrow3x+7=4+4\sqrt{x+1}+x+1\)
\(\Rightarrow2x+2=4\sqrt{x+1}\)
\(\Rightarrow x+1=2\sqrt{x+1}\)
\(\Rightarrow x^2+2x+1=4\left(x+1\right)\)
\(\Rightarrow x^2-2x-3=0\)
\(\Rightarrow x^2-3x+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy ....
a) \(\dfrac{1}{2\left(\sqrt{x}-1\right)}.\left(\dfrac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}+1\right)-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
rút gọn hộ mình vs mn
đkxđ:....
Rút gọn:
\(\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left(\dfrac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}+1\right)-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\dfrac{\sqrt{x}\left(\sqrt{x}^3-8\right)}{x+2\sqrt{x}+4}+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\sqrt{x}\left(\sqrt{x}-2\right)+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{2\left(\sqrt{x}-1\right)}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{2}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x+\sqrt{x}+1}{2\sqrt{x}}\)
\(=\dfrac{x-\sqrt{x}-x+\sqrt{x}+1}{2\sqrt{x}}=\dfrac{1}{2\sqrt{x}}\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
Tính hộ mình vs ạ
\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{4}\\ =2\sqrt{5}-2\sqrt{5}-2=-2\)
Liệt kê phép điệp từ trong khổ thơ 4-5 của văn bản mùa xuân nho nhỏ ( nhanh lên hộ tớ vs ạ mai tớ thi)
Điệp ngữ "ta làm" lặp đi lặp lại diễn tả khát vọng muốn được hòa nhập, muốn được cống hiến vào cuộc đời chung, sự nghiệp chung của đất nước.
Điệp ngữ : dù là" khẳng định ước muốn, tâm nguyện thường trực, thường xuyên, bền bỉ vượt thời gian, cả khi trẻ lẫn khi về già, cả khi khỏe mạnh hay bệnh tật. Đặt bài thơ vào cảnh ngộ lúc này của tác giả, ta thấy càng trân trọng hơn ước nguyện cao quý đó của nhà thơ.
Tìm các số x,y,z biết:
a,
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
b,
\(x+y+z+9=2\sqrt{x-2}+6\sqrt{y-3}+4\sqrt{z-9}\)
giải hộ mình vs :3
a,
\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)