Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 11 2021 lúc 21:23

Gọi d' là ảnh của d qua phép tịnh tiến \(\Rightarrow\) d' cùng phương d

Phương trình d' có dạng: \(3x+2y+c=0\)

Lấy \(A\left(0;2\right)\) là 1 điểm thuộc d

\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow A'\in d'\)

\(\left\{{}\begin{matrix}x'=0+\left(-1\right)=-1\\y'=2+3=5\end{matrix}\right.\) \(\Rightarrow A'\left(-1;5\right)\)

Thế vào pt d':

\(3.\left(-1\right)+2.5+c=0\Rightarrow c=-7\)

Phương trình d': \(3x+2y-7=0\)

nguyễn thị hương giang
16 tháng 11 2021 lúc 21:39

Cách 2:

Gọi d' là ảnh của d qua phép tịnh tiến  d' cùng phương d

Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=x'-a=x'-\left(-1\right)=x'+1\\y=y'-b=y'-3\end{matrix}\right.\)

Thay \(x;y\) vào d ta đc:

\(\Rightarrow\left(d'\right):3\left(x'+1\right)+2\left(y'-3\right)-4=0\)

\(\Rightarrow\left(d'\right):3x'+2y'-7=0\)

Vậy ảnh của (d) là \(\left(d'\right):3x+2y-7=0\)

nghiem thi huyen trang
Xem chi tiết
Trần Đức
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 22:46

1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác 

\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)

\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)

\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)

Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)

Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)

\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2

Nguyễn Việt Lâm
18 tháng 3 2021 lúc 22:48

2.

Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)

Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)

Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:

\(d\left(O;d_1\right)=R\)

\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)

\(\Rightarrow m=\pm1\)

Trí Nguyễn
11 tháng 4 2022 lúc 0:02

Ta có: d1 giao d2 có tọa độ A(1;0)

nếu ta gắn A(1;0) thành O(0;0) và d2 thành trục Ox

ta có thể ngầm tưởng như sau:

áp dụng công thức tính cos giữa 2 đg thẳng d1 và d2

=> cos alpha=\(\dfrac{16}{65}\)

=> cos giữa d3: đg phân giác của góc nhọn với d2 =\(\sqrt{\dfrac{81}{130}}\)

áp dụng công thức 1+ (tan \(\dfrac{alpha}{2}\))2 =\(\dfrac{1}{cos\left(\dfrac{alpha}{2}\right)^2}\)

=> tan \(\dfrac{alpha}{2}\)=\(\sqrt{\dfrac{1}{\dfrac{81}{130}}-1}\)

tan \(\dfrac{alpha}{2}\)=\(\dfrac{7}{9}\)

mà tan alpha/2=k của d3 và d2

=> d3 có dạng y=\(\dfrac{7}{9}x\)

=> dạng d3 nếu bỏ gắn A thành O và d2 thành trục Ox sẽ có dạng

-by=\(\dfrac{7}{9}x+c\)

Vì d3 đi qua A(1;0)

=>\(-b.0=\dfrac{7}{9}.1+c\)

=>\(c=-\dfrac{7}{9}\)

=>d3:\(\dfrac{7}{9}x+by-\dfrac{7}{9}=0\)

=>\(7x+9by-7=0\)

mà cos alpha/2=\(\sqrt{\dfrac{81}{130}}=\dfrac{\text{| 7.12+9b.5 |}}{\sqrt{7^2+\left(9b\right)^2}\sqrt{12^2+5^2}}\)

\(=>\left[{}\begin{matrix}b=-\dfrac{7}{33}\\b=\dfrac{301}{219}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}7x-\dfrac{21}{11}y-7=0\\7x+\dfrac{903}{73}-7=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}11X-3Y-11=0\\73X+129Y-73=0\end{matrix}\right.\)

Tính cos giữa \(11X-3Y-11=0\)

và d2 thõa mãn yêu cầu nên nhận

cos giữa \(73X+129Y-73=0\)

và d2 ko thõa mãn yêu cầu nên loại

mình mới nghỉ ra cách này thôi, nên còn nhiều thiếu xót

mình mới lớp 10 ak nha :< nên thầy cô nào xem được góp ý hộ con ạ :))

 

Quỳnh Hương Trần
Xem chi tiết
Hồng Phúc
19 tháng 12 2020 lúc 15:23

Phương trình hoành độ giao điểm của \(\left(d_1\right);\left(d_2\right)\):

\(4-x=2x-5\)

\(\Leftrightarrow x=3\Rightarrow y=1\Rightarrow\left(3;1\right)\) là giao điểm của \(\left(d_1\right);\left(d_2\right)\)

Ba đường thẳng đã cho đồng quy khi và chỉ khi \(\left(3;1\right)\in\left(d_3\right)\)

\(\Leftrightarrow6-m-2m+1=0\)

\(\Leftrightarrow m=\dfrac{7}{3}\)

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 0:09

B thuộc d nên B(2y-2;y)

C thuộc d nên C(x;0,5x+1)

vecto BA=(2y-2;y-2)

vecto BC=(x-2y;0,5x+1-y)

Theo đề, ta có: (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0 và 2y-2=2x-4y và y-2=2(0,5x+1-y)

=>2y-2x=-2 và y-2=x+2-2y

=>-x+y=-1 và x+2-2y-y+2=0

=>x-y=1 và x-3y=-4

=>x=3,5 và y=2,5 và (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0

=>\(\left(x,y\right)\in\varnothing\)

 

Nguyễn Huyền Trang
Xem chi tiết
Võ Như Viên
Xem chi tiết
Ngân Nguyễn Thúy
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2023 lúc 16:20

d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt

Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của \(\Delta\), do d và \(\Delta\) tạo với nhau 1 góc 60 độ

\(\Rightarrow\dfrac{\left|a.1+b.1\right|}{\sqrt{1^2+1^2}.\sqrt{a^2+b^2}}=cos60^0=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{2}\left|a+b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow2\left(a+b\right)^2=a^2+b^2\)

\(\Rightarrow a^2+4ab+b^2=0\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-2-\sqrt{3}\\b=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\) Có 2 đường thẳng \(\Delta\) thỏa mãn:

\(\left[{}\begin{matrix}1\left(x-2\right)-\left(2+\sqrt{3}\right)\left(y+6\right)=0\\1\left(x-2\right)-\left(2-\sqrt{3}\right)\left(y+6\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\left(2+\sqrt{3}\right)y-14-6\sqrt{3}=0\\x-\left(2-\sqrt{3}\right)y-14+6\sqrt{3}=0\end{matrix}\right.\)

Ngân Nguyễn Thúy
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2023 lúc 16:35

Tương tự bài trước, ta có:

\(\dfrac{\left|a.1+b.1\right|}{\sqrt{2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|a+b\right|=\sqrt{a^2+b^2}\Leftrightarrow\left(a+b\right)^2=a^2+b^2\)

\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Với \(a=0\) chọn \(b=1\) ; với \(b=0\) chọn \(a=1\), vậy có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}0\left(x-2\right)+1\left(y+6\right)=0\\1\left(x-2\right)+0\left(y+6\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y+6=0\\x-2=0\end{matrix}\right.\)