Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Transformers
Xem chi tiết
Bui Huyen
24 tháng 9 2019 lúc 20:36

Câu a có nhìu trên các trang mạng ạ

\(3x^2+5x+2=3\left(x^2+\frac{5}{3}x+\frac{25}{36}\right)-\frac{1}{12}\ge-\frac{1}{12}\)

 \("="\Leftrightarrow x=-\frac{5}{6}\)

Ngoc Nguyen
Xem chi tiết
Dung Nguyễn Thị Xuân
12 tháng 8 2018 lúc 20:39

Bài 6:

a) \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) \(5x\left(x-3\right)-x+3=0\)

\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

c) \(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(\Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\)

\(\Leftrightarrow-14x+2=30\)

\(\Leftrightarrow-14x=28\)

\(\Leftrightarrow x=-2\)

d) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)

\(\Leftrightarrow2x+16=0\)

\(\Leftrightarrow2x=-16\)

\(\Leftrightarrow x=-8\)

Ngoc Nguyen
12 tháng 8 2018 lúc 19:26

Em cần gấp bây h ạ :<

Dung Nguyễn Thị Xuân
12 tháng 8 2018 lúc 20:13

Bài 1:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^2+x^3+x+x^2+1\)

\(=x^2\left(x^2+1\right)+x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\)

Nguyễn Hồ Bảo Trâm
Xem chi tiết
Nguyễn Hồ Bảo Trâm
25 tháng 8 2020 lúc 13:20

help me, please

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:39

1. a . 3x2 - 6x = 0

\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b. x3 - 13x = 0

\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

c. 5x ( x - 2001 ) - x + 2001 = 0

<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0

\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:43

2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của bt trên = - 10 <=> x = - 1

b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của bt trên = 17 <=> x = - 4

Khách vãng lai đã xóa
Transformers
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
Nguyễn Phương Thanh
6 tháng 1 2016 lúc 23:35

tương tự baì đẳng trên mình vừa làm đấy

|A| <= 0 với mọi A

thì -|A| <= 0 vứi mọi A

tương tự với bình phương một số

Phan Thị Thanh Huyền
Xem chi tiết
Kiệt Nguyễn
9 tháng 10 2019 lúc 20:35

a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left[\left(x+4\right)^2-21\right]\)

\(=-\left(x+4\right)^2+21\le21\)

Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)

\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)

Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Hưng Ninja
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 6 2020 lúc 0:51

1/ Đặt \(\left\{{}\begin{matrix}2x^2+1=a\\2-5x=b\end{matrix}\right.\) \(\Rightarrow2x^2-5x+3=a+b\)

Ta được:

\(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow ab\left(a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2+1=0\left(vn\right)\\2-5x=0\\2x^2-5x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 6 2020 lúc 1:00

2/

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{b}{a-c}+\frac{c}{b-a}\)

\(\Leftrightarrow\frac{a}{b-c}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(a-c\right)\left(b-a\right)}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{c^2+ab-bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ; \(\frac{c}{\left(a-b\right)^2}=\frac{a^2+bc-ac-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Cộng vế với vế:

\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2+ab-bc-a^2+a^2+bc-ca-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Nguyễn Việt Lâm
2 tháng 6 2020 lúc 1:03

c/

\(M=x^2+5y^2-4xy+2x-8y+2018\)

\(M=\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-4y+4\right)+2013\)

\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)

\(M_{min}=2013\) khi \(\left\{{}\begin{matrix}x-2y+1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Lê Tiến Danh
Xem chi tiết
Lightning Farron
22 tháng 10 2016 lúc 13:24

Bài 1:

a)\(3x^2+5x+2\)

\(=3\left(x+\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu = khi \(x=-\frac{5}{6}\)

b)\(4x^2+y^2-2xy+7x-4y+10\)

tương tự có Min=\(\frac{21}{4}\Leftrightarrow x=-\frac{1}{2};y=\frac{3}{2}\)

Lightning Farron
22 tháng 10 2016 lúc 13:28

Câu 2: ở đây Câu hỏi của Phạm Thùy Linh - Toán lớp 8 | Học trực tuyến

Lightning Farron
22 tháng 10 2016 lúc 13:42

 

Câu 3:

\(a^{10}+b^{10}=a^{11}+b^{11}\)

\(\Rightarrow a^{11}-a^{10}+b^{11}-b^{10}=0\)

\(\Rightarrow a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\left(1\right)\)

Nếu a và b cùng lớn hơn 1, thì a-1 và b-1 đều dương nên:

\(a^{10}\left(a-1\right)+b^{10}\left(b-1\right)>0\) không đúng với (1)

Nếu a và b cùng nhỏ hơn 1, thì a-1 và b-1 đều âm nên:

\(a^{10}\left(a-1\right)+b^{10}\left(b-1\right)< 0\) không đúng với (1)

Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1

Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)

Ta có:

\(a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\)

\(\Rightarrow a^{10}\left(a-1\right)=b^{10}\left(b-1\right)\left(2\right)\)

Lại có:

\(a^{11}+b^{11}=a^{12}+b^{12}\)

\(\Rightarrow a^{12}-a^{11}+b^{12}-b^{11}=0\)

\(\Rightarrow a^{11}\left(a-1\right)+b^{11}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{10}\left(a-1\right)+b\cdot b^{10}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{10}\left(a-1\right)-b\cdot b^{10}\left(b-1\right)=0\)

\(\Rightarrow a\cdot a^{10}\left(a-1\right)-b\cdot a^{10}\left(a-1\right)=0\)(theo (2))

\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}a-1=0\\a-b=0\end{array}\right.\)(do a>0)

\(\Rightarrow a=b=1\Rightarrow A=1^{2015}+1^{2016}=2\)

 

 

 

 

 

 

Nguyễn Bảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2022 lúc 23:40

Bài 4: 

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

=>3x=42

hay x=14

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>-2x+8=0

=>-2x=-8

hay x=4

c: \(x\left(x-2\right)+\left(x-2\right)=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

d: \(5x\left(x-3\right)-x+3=0\)

=>5x(x-3)-(x-3)=0

=>(x-3)(5x-1)=0

=>x=3 hoặc x=1/5

e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)

\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)

=>-14x=28

hay x=-2

f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)

=>x+2=0

hay x=-2