Cho a+b+c=0. CMR: a^3+b^3+c^3=abc
Tìn GTNN của biểu thức: 3x^2+5x+2
1) Cho a+b+c=0 . CMR: a^3+b^3+c^3=abc
2) Tìm GTNN của biểu thức 3x^2+5x+2
Câu a có nhìu trên các trang mạng ạ
\(3x^2+5x+2=3\left(x^2+\frac{5}{3}x+\frac{25}{36}\right)-\frac{1}{12}\ge-\frac{1}{12}\)
\("="\Leftrightarrow x=-\frac{5}{6}\)
1. Phân tích đa thức thành nhân tử
a . Xy+y^2-x-y
b. x^4+x^3+2x^2+x+1
2. Tìm x biết
a. 2/3x(x^2-4)=0
b. 2x^2-x-6=0
c. 4x^2-3x-1=0
d. 5x^2-16x+3=0
3. a. Tìm số a để đa thức 3x^3+10x^2+6x+a chia hết cho đa thức 3x+1
b .Cho x+y=3 và xy = 2. Tìm x^3+y^3
4. Tìm GTNN của biểu thức
P= x^2-5x
Q= x^2+2y^2+2xy-2x -6y+2015
5. Rút gọn biểu thức sau rồi tính giá trị biểu thức
a . (2x+3)^2+(2x-3)^2-(2x+3)(4x-6)+xy tại x=2, y=-1
b. (x-2)^2-(x-1)(x+1)-x(1-x) tại x=-2
6. Tìm x biết
a . x(x-2)+x-2=0
b. 5x(x-3)-x+3=0
c. 3x(x-5)-(x-1)(2+3x) =30
d . (x+2)(x+3)-(x-2)(x+5)=0
7. Tìm GTNN của biểu thức A=x^2-2x+2
Bài 6:
a) \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(5x\left(x-3\right)-x+3=0\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(\Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\)
\(\Leftrightarrow-14x+2=30\)
\(\Leftrightarrow-14x=28\)
\(\Leftrightarrow x=-2\)
d) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow2x+16=0\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\)
Bài 1:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(x^4+x^3+2x^2+x+1\)
\(=x^4+x^2+x^3+x+x^2+1\)
\(=x^2\left(x^2+1\right)+x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\)
1. Tìm x
a) 3x^2 - 6x = 0
b) x^3 - 13x = 0
c) 5x.(x-2001) - x + 2001 = 0
2. Tìm GTNN, GTLN của biểu thức:
a) 2x^2 + 4x - 8
b) - x^2 - 8x +1
help me, please
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTNN của bt trên = - 10 <=> x = - 1
b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy GTLN của bt trên = 17 <=> x = - 4
1. Cho a+b+c=0. CMR: a3+b3+c3=abc
2. Tìm GTNN của:
a) 3x2+5x+2
b) 4x2+y2-2xy+7x-4y+10
Giúp mình vs, ai nhanh mik tick cho, thanks các bạn
Tìm GTNN của các biểu thức
a) 5x^2-1 b) 3(x+1)^2 -2 c) / x+5 / -3
Tìm GTLN của các biểu thức
a) 7-3x^2 b) 8-(x+2)^2 c) 10- / x + 2 /
zúp mk zới nhé
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
1)Tìm GTNN của biểu thức sau
a)A=5-8x-x^2
b)B=5x-3x^2
2)Tìm GTNN của biểu thức:
C=x+2y- căn2x-1 -5 căn4y-3 +13
a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\)
Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)
\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)
Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
1) Gỉai phương trình: (2x^2 +1)^3 + (2-5x)^3 = (2x^2 -5x +3)^3
2) Cho 3 số thực a, b, c đôi một khác nhau thoả mãn : a/b-c +b/c-a + c/a-b =0
CMR: a/(b-c)^2 +b/(c-a)2 +c/(a-c)^2 = 0
3) Tìm giá trị nhỏ nhất của biểu thức: M = x^2 + 5y^2 - 4xy +2x -8y +2018
1/ Đặt \(\left\{{}\begin{matrix}2x^2+1=a\\2-5x=b\end{matrix}\right.\) \(\Rightarrow2x^2-5x+3=a+b\)
Ta được:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2+1=0\left(vn\right)\\2-5x=0\\2x^2-5x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)
2/
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{b}{a-c}+\frac{c}{b-a}\)
\(\Leftrightarrow\frac{a}{b-c}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(a-c\right)\left(b-a\right)}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{c^2+ab-bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ; \(\frac{c}{\left(a-b\right)^2}=\frac{a^2+bc-ac-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng vế với vế:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2+ab-bc-a^2+a^2+bc-ca-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
c/
\(M=x^2+5y^2-4xy+2x-8y+2018\)
\(M=\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-4y+4\right)+2013\)
\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)
\(M_{min}=2013\) khi \(\left\{{}\begin{matrix}x-2y+1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Giups mình với các bạn ơi:
1. Tìm GTNN của biểu thức
a) 3x2+5x+2
b) 4x2+y2-2xy+7x-4y+10
2. Cho a+b+c=0. CMR: a3+b3+c3= abc
3. Cho a,b>0 thỏa mãn a10+b10=a11+b11=a12+b12
Tính A= a2015+b2016
JUP MIK VS CÁC BẠN ƠI, MIK SẼ TÍCH NHÌU CHO AI GIẢI NHANH VÀ HỢP LÍ
Bài 1:
a)\(3x^2+5x+2\)
\(=3\left(x+\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Dấu = khi \(x=-\frac{5}{6}\)
b)\(4x^2+y^2-2xy+7x-4y+10\)
tương tự có Min=\(\frac{21}{4}\Leftrightarrow x=-\frac{1}{2};y=\frac{3}{2}\)
Câu 2: ở đây Câu hỏi của Phạm Thùy Linh - Toán lớp 8 | Học trực tuyến
Câu 3:
\(a^{10}+b^{10}=a^{11}+b^{11}\)
\(\Rightarrow a^{11}-a^{10}+b^{11}-b^{10}=0\)
\(\Rightarrow a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\left(1\right)\)
Nếu a và b cùng lớn hơn 1, thì a-1 và b-1 đều dương nên:\(a^{10}\left(a-1\right)+b^{10}\left(b-1\right)>0\) không đúng với (1)
Nếu a và b cùng nhỏ hơn 1, thì a-1 và b-1 đều âm nên:\(a^{10}\left(a-1\right)+b^{10}\left(b-1\right)< 0\) không đúng với (1)
Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)
Ta có:
\(a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\)
\(\Rightarrow a^{10}\left(a-1\right)=b^{10}\left(b-1\right)\left(2\right)\)
Lại có:
\(a^{11}+b^{11}=a^{12}+b^{12}\)
\(\Rightarrow a^{12}-a^{11}+b^{12}-b^{11}=0\)
\(\Rightarrow a^{11}\left(a-1\right)+b^{11}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{10}\left(a-1\right)+b\cdot b^{10}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{10}\left(a-1\right)-b\cdot b^{10}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{10}\left(a-1\right)-b\cdot a^{10}\left(a-1\right)=0\)(theo (2))
\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a-1=0\\a-b=0\end{array}\right.\)(do a>0)
\(\Rightarrow a=b=1\Rightarrow A=1^{2015}+1^{2016}=2\)
1) Cho a = x^2 - yz ; b = y^2 - xz ; c = z^2 - xy
C/m ax+ by + cz chia hết cho ( a+b+c)
2) Cho x , y thỏa mãn 5x^2 + 5y^2 + 5xy - 2x + 2y + 2 = 0
Tính A = (x+y)^25 + ( x-1)^24 + (9y-2)^23
3) Cho đa thức A = x^3 + 4x^2 + 3x - 7 và B = x+4
a) Tính A : B
b) Tìm x thuộc z để giá trị biểu thức A chia hết cho giá trị biểu thức B
4) Tìm x biết
a) (x-1)^3 - (x+3)(x^2-3x+9) + 3(x^2-4) = 2
b) ( x+2)(x^2-2x+4)-x(x^2+2)=0
c) x(x-2)+x-2=0
d) 5x(x-3) - x+3 = 0
e) 3x(x-5) - (x-1)(2+3x) = 30
f) (x+2)(x+30-(x-2)(x+5) = 0
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2