chứng minh biểu thức sau luôn dương ;
a) x2-8x+25
b)4y2-12y+11
chứng minh rằng biểu thức sau luôn luôn dương ( hoặc âm ) với một giá trị của biểu thức đã cho: -a2 + a - 3
hello mik biết giải bài này nhưng bn phải viết rõ
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
Chứng minh biểu thức sau luôn dương với mọi x x^2+2x+7
$x^2+2x+7$
$=x^2+2x+1+6$
$=(x+1)^2+6$
Vì $(x+1)^2 \ge 0$
$\Rightarrow (x+1)^2+6 \ge 6>0\forall x$
Hay $x^2+2x+7>0\forall x$
Ta có: \(x^2+2x+7\)
\(=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6>0\forall x\)(đpcm)
Chứng minh các biểu thức sau luôn dương hay luôn âm
2 B = x^2 -10x + 27
4 D = -16x^2 + 16x -9
\(2,B=x^2-10x+27\)
\(=x^2-2.x.5+5^2+2\)
\(=\left(x-5\right)^2+2\)
Ta thấy: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+2\ge2\forall x\)
hay B luôn dương
\(4,D=-16x^2+16x-9\)
\(=-\left[\left(4x\right)^2-2.4x.2+2^2\right]-5\)
\(=-\left(4x-2\right)^2-5\)
Ta thấy: \(\left(4x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(4x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(4x-2\right)^2-5\le-5\forall x\)
hay D luôn âm.
2: B=x^2-10x+25+2
=(x-5)^2+2>=2>0 với mọi x
=>B luôn dương với mọi x
4: D=-16x^2+16x-9
=-(16x^2-16x+9)
=-(16x^2-16x+4+5)
=-(4x-2)^2-5<=-5<0
=>D luôn âm với mọi x
Chứng minh rằng biểu thức sau luôn dương:
x^2-8x+25
x^2-8x+25=(x^2-2.4.x+16)+9=(x-4)^2+9
vì (x-4)^2 luôn lớn hơn 0và9>0=>biểu thức trên lớn hơn 0
k nhan
Chứng minh biểu thức sau luôn dương với mọi x
P=16x\(^2\) + 8x + 2
\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)
\(P=16x^2+8x+2\)
\(=\left(16x^2+8x+1\right)+1\)
\(=\left[\left(4x\right)^2+2\cdot4x\cdot1+1^2\right]+1\)
\(=\left(4x+1\right)^2+1\)
Ta thấy: \(\left(4x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow P=\left(4x+1\right)^2+1\ge1>0\forall x\)
hay \(P\) luôn dương với mọi \(x\).
chứng minh biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến x:E=x^2+2x+15
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
E=(x2+2x+1)+14=(x+1)2+14
ta có (x+1)2 >=0 với mọi x
suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x
Chứng minh rằng biểu thức sau luôn dương:
4y^2-12y+11
= (2y)2 - 2.2y.3 + 9 + 2
= (2y - 3)2 +2 > 0
Vậy bt lun lun dương
Chứng minh biểu thức sau luôn dương với mọi giá trị của biến
3x2-3x+5y2-5y+3
\(3x^2-3x+5y^2-5y+3\\ =3\left(x^2-x+\dfrac{1}{4}\right)+5\left(y^2-y+\dfrac{1}{4}\right)+1\\ =3\left(x-\dfrac{1}{2}\right)^2+5\left(y-\dfrac{1}{2}\right)^2+1\ge1>0\)
chứng minh rằng biểu thức sau luôn dương
x2+4x+10
X2 + 4x + 10
=(x2 + 4x +4) + 6
=( x+2)2 +6 lớn hơn hoặc bằng 6 nên luôn dương
\(x^2+4x+10=x^2+4x+2^2+6=\left(x+2\right)^2+6\ge6\)
Vậy biểu thức trên luôn dương với mọi x