cho phương trình : x2-2(m+1)x+m+3=0
Tìm m để phương trình có hai nghiệm phân biệt cùng lớn hơn 1
cho pt : x2- 2(m+1)x+4m=0
tìm đk của m để phương trình có 2 nghiệm phân biệt cùng lớn hơn 1
Δ=(2m+2)^2-4*4m
=4m^2+8m+4-16m
=4m^2-8m+4=(2m-2)^2
Để phương trình có hai nghiệm phân biệt thì 2m-2<>0
=>m<>1
x1+x2>2 và x1x2>1
=>2m+2>2 và 4m>1
=>m>1/4
Cho phương trình: x2-2(m-1)x+3m-3=0
Tìm giá trị tham số m để phương trình có 2 nghiệm phân biệt cùng âm
ta có \(\Delta\)'=(m-1)^2-3m+3=m^2-2m+1-3m+3=m^2-5m+4>/=0=>m</=1;m>/=4
pt cos 2 no âm pb=>\(\left\{{}\begin{matrix}S< 0\\P>0\\\Delta\ge0\end{matrix}\right.\)=>.....
cho phương trình bậc hai (ẩn x):
tìm m để phương trình luôn có 2 nghiệm phân biệt thỏa mãn
Cho phương trình x2- 2( m+1 )x+m2+4=0
Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x12 +2(m+1)x2 ≤ 2m2 + 20
x1+x2=2m+2; x1x2=m^2+4
x1^2+2(m+1)x2<=2m^2+20
=>x1^2+x2(x1+x2)<=2m^2+20
=>x1^2+x2x1+x2^2<=2m^2+20
=>(x1+x2)^2-x1x2<=2m^2+20
=>(2m+2)^2-(m^2+4)<=2m^2+20
=>4m^2+8m+4-m^2-4-2m^2-20<=0
=>m^2-8m-20<=0
=>m<=-10 hoặc m>2
\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)
Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)
Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)
Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)
\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)
\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)
\(\Leftrightarrow m^2+8m-16\le0\)
\(\Leftrightarrow-10\le m\le2\)
Kết hợp điều kiện....
Cho phương trình: x²+2mx-3=0
Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn: x1²+x2²+3x1.x2=1
=>(x1+x2)^2+x1x2=1
=>(-2m)^2+(-3)=1
=>4m^2=4
=>m=-1 hoặc m=1
Do a = 1 và c = -3
⇒ a và c trái dấu
⇒ Phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
x₁ + x₂ = -2m
x₁x₂ = -3
Lại có:
x₁² + x₂² + 3x₁x₂ = 1
⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1
⇔ (x₁ + x₂)² + x₁x₂ = 1
⇔ (-2m)² - 3 = 1
⇔ 4m² = 4
⇔ m² = 1
⇔ m = -1 hoặc m = 1
Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1
Cho phương trình: 2x²-(4m+3x)x+2m²-1=0
tìm m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn: x1²+x2²=6
\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)
\(-x^2-4mx+2m^2-1=0\)
\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)
Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=6\)
\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)
\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)
\(\Leftrightarrow20m^2=8\)
\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)
Vậy ...
Cho phương trình
(2m+3)x2+(4m-1)x+1=0
Tìm m để pt có 2 nghiệm phân biệt
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)
\(=16m^2-16m-8\)
Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+1-8m-12\)
\(=16m^2-16m-11\)
Để pt có 2 nghiệm pb khi \(16m^2-16m-11>0\)
Cho Phương trình: -x²+(m+2)x+2m=0
Tìm m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn điều kiện: x1+4x2=0
\(-x^2+\left(m+2\right)x+2m=0\)
\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)
Để phương trình có 2 nghiệm phân biệt
<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)
Vì phương trình có 2 nghiệm phân biệt
Áp dụng hệ thức vi ét
\(\Rightarrow x_1+x_2=m+2\)
=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)
\(\Rightarrow m=-3x_2-2\)
Bạn xem lại đề chứ k tìm được m luôn á
Cho phương trình x2-11x+m-2=0
Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1;x2 thỏa mãn \(\sqrt{x_1^2-10x_1+m-1}\)=5-\(\sqrt{x_2+1}\)
\(x^2-11x+m-2=0\left(1\right)\)
Để phương trình (1) có 2 nghiệm phân biệt thì:
\(\Delta>0\Rightarrow\left(-11\right)^2-4.1.\left(m-2\right)>0\)
\(\Leftrightarrow121-4m+8>0\)
\(\Leftrightarrow m< \dfrac{129}{4}\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=11\left(1'\right)\\x_1x_2=m-2\end{matrix}\right.\).
Ta có: \(\sqrt{x^2_1-10x_1+m-1}=5-\sqrt{x_2+1}\left(2\right)\)
Đk: \(\left\{{}\begin{matrix}x_1^2-10x_1+m-1\ge0\\-1\le x_2\le24\end{matrix}\right.\)
\(\left(2\right)\Rightarrow x^2_1-10x_1+m-1=25-10\sqrt{x_2+1}+x_2+1\)
\(\Leftrightarrow x_1^2-10x_1+\left(m-2\right)-25+10\sqrt{11-x_1+1}-x_2=0\)
\(\Rightarrow x_1^2-\left(x_1+x_2\right)-9x_1+x_1x_2-25+10\sqrt{12-x_1}=0\)
\(\Rightarrow x_1\left(x_1+x_2\right)-11-9x_1-25+10\sqrt{12-x_1}=0\)
\(\Rightarrow11x_1-9x_1-36+10\sqrt{12-x_1}=0\)
\(\Leftrightarrow2x_1+10\sqrt{12-x_1}-36=0\)
\(\Leftrightarrow x_1+5\sqrt{12-x_1}-18=0\)
\(\Leftrightarrow18-x_1=5\sqrt{12-x_1}\left(x_1\le12\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\\left(18-x_1\right)^2=25\left(12-x_1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\324-36x_1+x_1^2=300-25x_1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\x_1^2-11x_1+24=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=3\\x_1=8\end{matrix}\right.\left(nhận\right)\)
Thay \(x_1=3\) vào (1') ta được:
\(3+x_2=11\Rightarrow x_2=8\left(nhận\right)\)
\(\Rightarrow m=x_1x_2+2=3.8+2=26\left(thỏa\Delta>0\right)\)
Thay \(x_1=8\) vào (1') ta được:'
\(8+x_2=11\Rightarrow x_2=3\left(nhận\right)\)
\(\Rightarrow m=x_1x_2+2=8.3+2=26\left(thỏa\Delta>0\right)\)
Vậy giá trị m cần tìm là 26.