\(\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}-\dfrac{x-3}{x+3}=0\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
Thực hiện phép tính:
a) \(\dfrac{x^2}{x-1}+\dfrac{1-2x}{x-1}\)
b) \(\dfrac{x}{x-3}+\dfrac{-9}{x^2-3x}\)
c) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
d) \(\dfrac{5x+10}{4x-8}.\dfrac{x-2}{x+2}\)
e) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^2}\)
b) \(\dfrac{x}{x-3}\) + \(\dfrac{-9}{x^2-3x}\)
=\(\dfrac{x}{x-3}\)+ \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x.x}{x\left(x-3\right)}\) + \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x^2+3^2}{x\left(x-3\right)}\)
=\(\dfrac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}\)
=\(\dfrac{x+3}{x}\)
#Fiona
c) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
=\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{3^2-x^2}\) + \(\dfrac{x}{x+3}\)
=\(\dfrac{3}{x-3}\)+\(\dfrac{6x}{\left(x+3\right)\left(x-3\right)}\)+\(\dfrac{x}{x+3}\)
=\(\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)+\(\dfrac{6x}{\left(x+3\right)\left(x-3\right)}\)+\(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
=\(\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{9+6x+x^2}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{3^2+2.3x+x^2}{\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{\left(3-x\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{x-3}{x+3}\)
#Fiona
Tick đúng giúp mình nhaa<3
d)\(\dfrac{5x+10}{4x-8}\).\(\dfrac{x-2}{x+2}\)
=\(\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\) . \(\dfrac{x-2}{x+2}\)
=\(\dfrac{5\left(x+2\right).\left(x-2\right)\text{}\text{}}{4\left(x-2\right).\left(x+2\right)}\)
=\(\dfrac{5}{4}\)
#Fiona
Tick đúng giúp mikk nhaa
1) GIẢI phương trình :
a) 2x-6=0
b) x2-4x=0
c)\(\dfrac{x+2}{x-3}\)-\(\dfrac{3}{x}\)=\(\dfrac{x+9}{x^2-3x}\)
d) \(\dfrac{x-1}{2}\)-\(\dfrac{x-2}{3}\)=x-\(\dfrac{x-3}{4}\)
giải chi tiết giúp mik ah
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)
\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)
4: Ta có: \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow40x-20+45x-30=48x-36\)
\(\Leftrightarrow37x=14\)
hay \(x=\dfrac{14}{37}\)
5: Ta có: \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
\(\Leftrightarrow2x-6-3x-6=x+4-9\)
\(\Leftrightarrow-x-x=-5-12=-17\)
hay \(x=\dfrac{17}{2}\)
P=\(\left(\dfrac{x^2-3x}{x^2-9}-1\right):\left(\dfrac{9-x^2}{x^2+x+6}-\dfrac{x-3}{2-x}-\dfrac{x-2}{x+3}\right)\)
b) Rút gọn P. Tìm P với x thỏa mãn x3 -4x=0
\(b,P=\left[\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-1\right]:\dfrac{9-x^2+\left(x-3\right)\left(x+3\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\left(x\ne\pm3;x\ne2\right)\\ P=\left(\dfrac{x}{x+3}-1\right)\cdot\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2+x^2-9-\left(x-2\right)^2}\\ P=\dfrac{x-x-3}{x+3}\cdot\dfrac{\left(x-2\right)\left(x+3\right)}{-\left(x-2\right)^2}\\ P=\dfrac{-3}{-\left(x-2\right)}=\dfrac{3}{x-2}\)
Với \(x^3-4x=0\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\\x=-2\end{matrix}\right.\)
Với \(x=0\Leftrightarrow P=\dfrac{3}{0-2}=-\dfrac{3}{2}\)
Với \(x=-2\Leftrightarrow P=\dfrac{3}{-2-2}=-\dfrac{3}{4}\)
Giải các phương trình sau:
a) 2,3 - 2(0,7 + 2) = 3,6 - 1,7x
b) \(\dfrac{5x+7}{4}-\dfrac{3x+5}{8}=\dfrac{4x+9}{5}-\dfrac{x-9}{3}\)
c) \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
d) (x - 1)(x + 2) - x(x + 3) = 8
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
Bài 1: GPT
a) \(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{4x^2}{x^2-4}\)
b) \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
c)\(\dfrac{x+3}{x-3}-\dfrac{48}{x^2-9}=\dfrac{x-3}{x+3}\)
a: ĐKXĐ: x<>2; x<>-2
PT =>(x+2)^2-(x-2)^2=4x^2
=>4x^2=x^2+4x+4-x^2+4x-4=8x
=>4x^2-8x=0
=>4x(x-2)=0
=>x=0(loại) hoặc x=2(loại)
b: ĐKXĐ: x<>1; x<>3
PT =>6x-18-4x+4=8
=>2x-14=8
=>2x=22
=>x=11(nhận)
c: ĐKXĐ: x<>3; x<>-3
PT =>(x+3)^2-48=(x-3)^2
=>x^2+6x+9-48=x^2-6x+9
=>12x=48
=>x=4(nhận)