Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hải nguyễn hoàng
Xem chi tiết
Knight™
9 tháng 3 2022 lúc 14:17

\(x\times5=100\)

\(x=20\)

 

Kaito Kid
9 tháng 3 2022 lúc 14:19

x.(2+3)=100

x.5=100

x=20

Trịnh Đăng Hoàng Anh
9 tháng 3 2022 lúc 14:19

x X (2+3)=100

x X 5=100

x=20

Lê Thi Yến Nhi
Xem chi tiết
HT.Phong (9A5)
5 tháng 7 2023 lúc 10:52

\(\left(x-2\right)\left(x^2+2x+4\right)+3x-4=\left(x+2\right)\left(x^2-2x+4\right)-x+1\)

\(\Rightarrow\left(x^3-8\right)+3x-4=\left(x^3+8\right)-x+1\)

\(\Rightarrow x^3-8+3x-4=x^3+8-x+1\)

\(\Rightarrow x^3-x^3+3x+x=8+8+4+1\)

\(\Rightarrow4x=21\)

\(\Rightarrow x=\dfrac{21}{5}\)

Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 9:26

\(\Rightarrow x^3+3x^2+3x+1=0\\ \Rightarrow\left(x+1\right)^3=0\Rightarrow x+1=0\Rightarrow x=-1\)

Me me biggg boy
Xem chi tiết
Hồ Lê Thiên Đức
24 tháng 11 2021 lúc 17:18

Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y

                            = (x-y)2+2xy / x-y

Mà xy = 1 => 2xy = 2. Thay vào, ta có

(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y

                                                  = x-y + 2 / x-y

Áp dụng BĐT Cauchy, ta có

x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3

Vậy Min A = (√2)3

minaband12345
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 14:00

\(\left(x+\dfrac{1}{2}\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=1\\x+\dfrac{1}{2}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

nhung olv
24 tháng 10 2021 lúc 14:05
NoName.155774
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:59

Bài 2: 

a: Ta có: \(x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

Nguyễn Lê Thanh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 8 2021 lúc 16:15

Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

 \(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)

\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)

\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)

\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)

\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)

Dấu "=" xảy ra khi \(x=y=0\)

Lê Đức Mạnh
Xem chi tiết
Trang Huyền
Xem chi tiết
Nguyễn Huy Tú
10 tháng 2 2022 lúc 21:13

Ta có x - y = 1 => x = y + 1 

\(\dfrac{x+2}{9}=\dfrac{1}{y+2}\Rightarrow\left(x+2\right)\left(y+2\right)=9\)

\(\Leftrightarrow\left(3+y\right)\left(y+2\right)=9\Leftrightarrow y^2+5y-3=0\Leftrightarrow y=\dfrac{-5\pm\sqrt{37}}{2}\)

thay vào tìm x 

ps nhưng số xấu quá bạn ạ, kiểm tra lại đề nhé 

ILoveMath
10 tháng 2 2022 lúc 21:18

ĐKXĐ:\(y\ne-2\)

\(\left\{{}\begin{matrix}\dfrac{x-1}{9}+\dfrac{1}{3}=\dfrac{1}{y+2}\\x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+1-1}{9}+\dfrac{3}{9}=\dfrac{1}{y+2}\\x=y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+3}{9}=\dfrac{1}{y+2}\\x=y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(y+3\right)\left(y+2\right)=9\\x=y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2+5y+6-9=0\\x=y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2+5y-3=0\\x=y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=\dfrac{-5+\sqrt{37}}{2}\\y=\dfrac{-5-\sqrt{37}}{2}\end{matrix}\right.\\x=y+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{37}}{2}\\y=\dfrac{-5+\sqrt{37}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{-3-\sqrt{37}}{2}\\y=\dfrac{-5-\sqrt{37}}{2}\end{matrix}\right.\end{matrix}\right.\)

Minh Hiếu
10 tháng 2 2022 lúc 21:20

Ta có:

\(x-y=1\Rightarrow x=1+y\)

Thay vào 

\(\dfrac{x-1}{9}+\dfrac{1}{3}=\dfrac{1}{y}+2\) \(\left(đk:y\ne0\right)\)

\(\dfrac{x+2}{9}=\dfrac{2y+1}{y}\)

\(\Leftrightarrow\dfrac{y+3}{9}=\dfrac{2y+1}{y}\)

\(\Leftrightarrow y^2+3y=18y+9\)

\(\Leftrightarrow y^2-15y-9=0\)

\(\Leftrightarrow\)\(\left(y-\dfrac{15}{2}\right)^2=\dfrac{261}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}y-\dfrac{15}{2}=\dfrac{\sqrt{261}}{2}\\y-\dfrac{15}{2}=-\dfrac{\sqrt{261}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{261}+15}{2}\\y=\dfrac{15-\sqrt{261}}{2}\end{matrix}\right.\)

DŨNG
Xem chi tiết
Hoàng Đình Bảo
31 tháng 3 2022 lúc 20:53

$\large A=\frac{2\sqrt{x}-1}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}$

Ta có: $\large \sqrt{x}+1\ge1\Leftrightarrow -\frac{3}{\sqrt{x}+1}\ge-3$

Do đó: $\large A \ge 2-3=-1$

Vậy $A_{min}=-1$

Dấu $"="$ xảy ra khi $x=0$