Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2019 lúc 18:08

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có:  a 2  = 5 k + 4 2

      = 25 k 2  + 40k + 16

      = 25 k 2  + 40k + 15 + 1

      = 5(5 k 2  + 8k +3) +1

Ta có: 5 ⋮ 5 nên 5(5 k 2  + 8k + 3) ⋮ 5

Vậy  a 2  =  5 k + 4 2  chia cho 5 dư 1. (đpcm)

Nguyễn Mai Anh
Xem chi tiết

a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2

\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)

b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3

\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)

 

HT.Phong (9A5)
15 tháng 10 2023 lúc 9:07

a) Số a có dạng: \(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)

\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)

Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3 

\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1

b) Số a có dạng là: \(a=5k+3\) 

\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)

\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)

Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5

\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4 

Nguyễn Trần Lam Trúc
Xem chi tiết
Giang Hương
25 tháng 8 2021 lúc 8:28

Có a chia 5 dư 4

=> a= 5k +4

=> a²= (5k+4)²= 25k²+ 40k+ 16

vì 25k² chia hết cho 5

    40k chia hết cho 5

   16 chia 5 dư 1

=> 25k²+ 40k+ 16 chia 5 dư 0+0+1= 1

=> a² chia 5 dư 1

tick mình nhayeu

Minh Hiếu
25 tháng 8 2021 lúc 8:29

Vì a chia 5 dư 4 nên a có dạng 5k-1 (k∈N))

Ta có a^2=(5k−1)^2=25k^2−10k+1=5(5k^2−2k)+1

Vậy a^2 chia 5 dư 1 .

Phía sau một cô gái
25 tháng 8 2021 lúc 8:30

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈ N)

Ta có: a\(^2\) = (5k + 4)\(^2\)

      = 25k\(^2\) + 40k + 16

      = 25k\(^2\)\(^2\) + 40k + 15 + 1

      = 5 (5k\(^2\) + 8k + 3) +1

Ta có: 5 ⋮ 5 nên 5 (5k\(^2\) + 8k + 3) ⋮ 5

Vậy a\(^2\) = (5k + 4)\(^2\)  chia cho 5 dư 1. (đpcm)

Nguyễn Lê Nguyên Vy
Xem chi tiết
Chiminh
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Alicia
Xem chi tiết
Edogawa Conan
27 tháng 8 2021 lúc 8:58

Vì a ko chia hết cho 5

 ⇒ a có dạng 5k+1,5k+2,5k+3,5k+4

Với a=5k+1 ⇒ a2=(5k+1)2=25k2+10k+1=5(5k2+2k)+1 dư 1

Với a=5k+2 ⇒ a2=(5k+2)2=25k2+20k+4=5(5k2+4k)+4 dư 4

Với a=5k+3 ⇒ a2=(5k+3)2=25k2+30k+9=5(5k2+6k+1)+4 dư 4

Với a=5k+4 ⇒ a2=(5k+4)2=25k2+40k+16=5(5k2+8k+3)+1 dư 1 

Minh Hiếu
27 tháng 8 2021 lúc 8:52

Có a chia 5 dư 4

=> a= 5k +4

=> a²= (5k+4)²= 25k²+ 40k+ 16

vì 25k² chia hết cho 5

    40k chia hết cho 5

   16 chia 5 dư 1

=> 25k²+ 40k+ 16 chia 5 dư 0+0+1= 1

=> a² chia 5 dư 1

Dung Tr
Xem chi tiết
Nguyễn Thị BÍch Hậu
5 tháng 7 2015 lúc 9:39

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

Phạm Mai Hoa
Xem chi tiết
Trần Tuyết Như
26 tháng 7 2016 lúc 21:02

a chia 5 dư 4  =>  a = 5k + 4

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16=5k\left(5k+8\right)+16\)

5k (5k + 8) chia hết cho 8  => tận cùng = 0 hoặc = 5  => 5k (5k + 8) + 16 tận cùng 1 hoặc 6

=> a^2 chia 5 dư 1

Lê Hạnh Nguyên
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 7 2015 lúc 22:11

a chia 5 dư 4=>a=5k+4

=>a2=(5k+4)(5k+4)

=(5k+4)5k+4(5k+4)

=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1

=>đpcm

NGUYEN BUI DIEM PHUC
16 tháng 7 2018 lúc 19:47

Tại sao là a^2=(5k+4)*(5k+4)

Vì sao là ra cái đó bạn

TV Pipper
21 tháng 10 2018 lúc 16:12

a^2 = (5k + 4 ) * ( 5k + 4 ) Vì :))) a = 5k +4 
Mà a^2 =a.a  
Thế nó vào :)) 
Suy ra ( 5k + 4 ) * ( 5k + 4 ) thôi 

Lion
Xem chi tiết
alibaba nguyễn
11 tháng 9 2018 lúc 16:25

Ta co:

\(a=5n+4\)

\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)

cai này chia 5 dư 1

Dương Lam Hàng
11 tháng 9 2018 lúc 16:33

Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)

Vì hai số đều là các số tự nhiên

Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 =  25k2 + 40k + 16

Vì 25k2 chia hết cho 5

     40k chia hết cho 5

Mà 16 chia 5 dư 1

Vậy 25k2 + 40k + 16 chia 5 dư 1

=> ĐPCM

shitbo
13 tháng 1 2019 lúc 16:34

\(Đặt:a=5a+4\)

\(\Rightarrow a^2=\left(5a+4\right)\left(5a+4\right)=25a^2+40a+16\)

chia 5 dư 1 đpcm