Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
help me ai nhanh nhất mik tích cho
a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)
Tìm x,y,z biết :
1) \(x:y:z=3:5:\left(-2\right)\) và \(5x-y+3z=-16\)
2) \(\dfrac{x}{2}=\dfrac{y}{-3};\dfrac{z}{3}=\dfrac{y}{4}\) và \(x+y+z=5,2\)
3) \(2x=3y;7z=5y\) và \(3x-7y+5z=30\)
4) \(3x=4y=5z\) và \(x-\left(y+z\right)=-21\)
5) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(2x+3y-z=50\)
Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tập hợp các biến số (a,b,c là hằng)
\(\left[\dfrac{-1}{2}\left(a-1\right)x^3y^3z^4\right]^5;\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right);\left(\dfrac{-8}{15}a^3x^3y\right).\left(\dfrac{-5}{4}ax^5y^2z\right)\)
Thu gọn các đa thức sau rồi tìm bậc của chúng
a) \(5x^2yz\left(-8xy^3z\right)\)
b) \(15xy^2z\left(\dfrac{-4}{3}x^2yz^3\right).2xy\)
\(a.5x^2yz.\left(-8xy^3z\right)=-40x^3y^4z^2\)
có bậc là:9
\(b.15xy^2z\left(-\dfrac{4}{3}x^2yz^3\right).2xy=-5x^4y^4z^4\)
có bậc là:12
a)\(=\left(-8.5\right)\left(x^2x\right)\left(yy^3\right)\left(zz\right)=-40x^3y^4z^2\)
bậc : 3+4+2=9
b)\(=\left(15\cdot\dfrac{-4}{3}.2\right)\left(xx^2x\right)\left(y^2yy\right)\left(z^3z\right)=-40x^4y^4z^4\)
bậc : 4+4+4=12
Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tập hợp các biến số (a,b,c là hằng)
\(\left[\dfrac{-1}{2}\left(a-1\right)x^3y^3z^4\right]^5;\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right);\left(\dfrac{-8}{15}a^3x^3y\right).\left(\dfrac{-5}{4}ax^5y^2z\right)\)
Thu gọn đơn thức, tìm bậc, hệ số, biến
A = \(x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right)
\)
B = \(\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right)\)
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tặp hợp các biến số (a,b,c là hằng)
a,\([\dfrac{-1}{2}\left(a-1\right)x^3y^3z^4]\); b, \((a^2b^2xy^2z^{n-1})\)\(\left(-b^3cx^4z^{7-n}\right)\); \(\left(\dfrac{-8}{15}a^3x^3y\right).\left(\dfrac{-5}{4}ã^5y^2z\right)\)
a, Ta có: \(\left[-\dfrac{1}{2}.\left(a-1\right)x^3y^3z^4\right]^5=\left(\dfrac{-1}{2}\right)^5.\left(a-1\right)^5.x^{3.5}y^{3.5}z^{4.5}\)
\(=\dfrac{1}{32}.\left(a-1\right)^5.x^{15}y^{15}z^{20}\)
Đơn thức trên có hệ số là \(\dfrac{1}{32}.\left(a-1\right)^5\); bậc là 50.
Vậy...
b, \(\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)=\left[a^2b^2\left(-b^3\right)c\right]\left(xy^2z^{n-1}x^4z^{7-n}\right)\)
\(=\left[a^2.\left(-b^5\right)c\right]\left(x^5y^2z^6\right)\)
Đơn thức trên có hệ số là \(a^2.\left(-b^5\right)c\); bậc là 13.
Vậy...
c, \(\left(\dfrac{-8}{15}a^3x^3y\right)\left(\dfrac{-5}{4}ax^5y^2z\right)=\left(\dfrac{-8}{15}.\dfrac{-5}{4}a^3a\right)\left(x^3yx^5y^2z\right)\)
\(=\left(\dfrac{2}{3}a^4\right)\left(x^8y^3z\right)\)
Đơn thức trên có hệ số là \(\dfrac{2}{3}a^4\); bậc là 12.
Vậy...
Thu gọn các đơn thức sau rồi tìm bậc của chúng :
a) \(2x^2yz\left(-3xy^3z\right)\)
b) \(\left(-12xyz\right)\left(\dfrac{-4}{3}x^2yz^3\right)y\)
c) \(-2x^2y\left(-3xy^2\right)^3\)
d)\(12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2\)
Giải:
a) \(2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)
Bậc của đơn thức: \(3+4+2=9\)
b) \(\left(-12xyz\right)\left(\dfrac{-4}{3}x^2yz^3\right)y=16x^3y^3z^4\)
Bậc của đơn thức: \(3+3+4=10\)
c) \(-2x^2y\left(-3xy^2\right)^3=-2x^2y\left(-27x^3y^6\right)=54x^5y^7\)
Bậc của đơn thức: \(5+7=12\)
d) \(12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2=6x^4\left(\dfrac{4}{25}x^6y^2\right)=\dfrac{24}{25}x^{10}y^2\)
Bậc của đơn thức: \(10+2=12\)
\(a,2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)
Bậc của đơn thức là 9
\(b,\left(-12xyz\right)\left(-\dfrac{4}{3}x^2yz^3\right)y=16x^3y^3z^4\)
Bậc của đơn thức: 10
\(c,-2x^2y\left(-3xy^2\right)^3\)
\(-2x^2y.\left(-27\right)x^3y^6=54x^5y^7\)
Bậc của đơn thức: 12
\(d,12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2\)
\(=12\dfrac{1}{2}x^4\cdot\dfrac{4}{25}x^6y^2=2x^{10}y^2\)
Bậc của đơn thức : 12
Thu gọn các đơn thức :
a) \(\left(\dfrac{a}{2}\right)^33xy\left(4a^2x^3\right)\left(\dfrac{13}{3}ay^2\right)\)
b)\(\left(2x^2y^3z^4\right)^k\left(-\dfrac{1}{2}xy^2\right)^2\)
c) \(\left(\dfrac{7}{3}x^2y^3\right)^{10}\left(\dfrac{3}{7}x^5y^4\right)^{10}\)
a) \(A=\left(\dfrac{1}{2^3}.3.\dfrac{13}{3}\right)\left(a^{3+2+1}\right)\left(x^{1+3}\right)\left(y^{1+2}\right)=\dfrac{13}{8}.a^6.x^4.y^3\)
\(B=\left[2^k.\left(-\dfrac{1}{2}\right)^2\right]\left(x^{2k+2}\right)\left(y^{3k+2.2}\right)\left(z^{4k+}\right)=2^{k-2}.x^{2\left(k+1\right)}.y^{3k+4}.z^{4k}\)
c, Ta có: \(\left(\dfrac{7}{3}x^2y^3\right)^{10}\left(\dfrac{3}{7}x^5y^4\right)^{10}\)
=\(\left(\dfrac{7}{3}\right)^{10}x^{20}y^{30}\left(\dfrac{3}{7}\right)^{10}x^{50}y^{40}\)
=\(\left(\dfrac{7}{3}\right)^{10}\left(\dfrac{3}{7}\right)^{10}x^{70}y^{70}\)
=\(1x^{70}y^{70}\)
=\(x^{70}y^{70}\)
cho 2 đa thức A= \(-4x^5y^3+x^4y^3-3x^2y^3z^2-x^4y^3+x^2y^3z^2-2y^4\)
a) thu gọn rồi tìm bậc đa thức A
b) tìm đa thức B biết rằng B\(-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)