Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Tuan Anh
Xem chi tiết
Minh Thư Trần
Xem chi tiết
Trương Ngọc Linh
5 tháng 7 2023 lúc 13:58

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

Nguyễn Đức Trí
5 tháng 7 2023 lúc 15:14

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

Anime
Xem chi tiết
Lê Song Phương
4 tháng 6 2023 lúc 9:43

Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương. 

Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.

Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.

 Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)

Lê Song Phương
4 tháng 6 2023 lúc 9:44

Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.

Minh Thư Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 12:35

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại

phạm hương trà
Xem chi tiết
N.T.M.D
Xem chi tiết
Họ hàng của abcdefghijkl...
Xem chi tiết
shitbo
7 tháng 5 2020 lúc 17:06

Đặt \(\frac{p+1}{2}=x^2;\frac{p^2+1}{2}=y^2\left(x;y\inℕ^∗;x< y\right)\)

\(\Rightarrow p+1=2x^2;p^2+1=2y^2\) => p là số lẻ

Ta dễ thấy rằng \(2x^2\equiv2y^2\left(modp\right)\) mà p lẻ nên \(x^2\equiv y^2\left(modp\right)\)

Mặt khác ta có:\(x^2-y^2=\left(x-y\right)\left(x+y\right)⋮p\Rightarrow x+y=p\) ( vì x < y < p )

Từ đó ta dễ có rằng \(p^2+1=2\left(p-x\right)^2=2p^2-4px+2x^2=2p^2-4px+p+1\)

\(\Rightarrow4px=p^2+p\Leftrightarrow4x=p+1\Rightarrow2x^2=4x\Rightarrow x=0\left(h\right)x=2\Rightarrow p=-1\left(h\right)p=7\)

Mà p là số nguyên tố nên p = 7

Vậy p = 7

Khách vãng lai đã xóa
Thanh Tùng Nguyễn
Xem chi tiết
trần gia bảo
Xem chi tiết
Mathematics❤Trần Trung H...
22 tháng 5 2019 lúc 11:49

Vì P là số nguyên tố, P là scp 

=> Vô lý

Vậy không tìm được giá trị nào

Mathematics❤Trần Trung H...
22 tháng 5 2019 lúc 11:49

Vì P là số nguyên tố, P là scp 

=> Vô lý

Vậy không tìm được giá trị nào

Mathematics❤Trần Trung H...
22 tháng 5 2019 lúc 11:50

Vì P là số nguyên tố, P là scp 

=> Vô lý

Vậy không tìm được giá trị nào