Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyên Sơn
Xem chi tiết
Bình Minh Trần
Xem chi tiết
Girl
13 tháng 10 2018 lúc 19:38

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

Zin
Xem chi tiết
Bình Dị
17 tháng 2 2017 lúc 21:51

Dùng Bđt Cauchy: \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

ngonhuminh
17 tháng 2 2017 lúc 22:12

Chơi tổng quát luôn tìm GTNN &LN \(P=\frac{x}{y}+\frac{y}{x}\) với mọi x,y khác không

đặt x/y=t => y/x=1/t

\(P=t+\frac{1}{t}=\frac{t^2+1}{t}\Leftrightarrow t^2-pt+1=0\) (1)

\(\left(1\right)\Leftrightarrow t^2+pt+\frac{p^2}{4}=\frac{p^2}{4}-1\)

\(\Leftrightarrow\left(t-\frac{p}{2}\right)^2=\frac{p^2-4}{4}\)

VT là bình phương => để tồn tại (t) VP >=0

\(\Leftrightarrow\frac{p^2-4}{4}\ge0\Leftrightarrow p^2-4\ge0\Leftrightarrow p^2\ge4\Rightarrow!p!\ge2\Rightarrow\left[\begin{matrix}P\le-2\\P\ge2\end{matrix}\right.\)

Ánh Dương
Xem chi tiết
Phạm Lan Hương
25 tháng 11 2019 lúc 20:07
https://i.imgur.com/OrspMQU.jpg
Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 11 2019 lúc 20:27

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)

Cộng vế với vế:

\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

Khách vãng lai đã xóa
Lê Gia Bảo
25 tháng 11 2019 lúc 20:26

a. \(\)Áp dụng bất đẳng thức Côsi cho 2 số dương \(\frac{xy}{z}\)\(\frac{yz}{x}\), ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\) (1)

Hoàn toàn tương tự: \(\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2z\)\(\frac{xy}{z}+\frac{zx}{y}\ge2x\) (2)

Từ (1) và (2) suy ra đpcm

Khách vãng lai đã xóa
Kun ZERO
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 5 2020 lúc 22:43

\(\sqrt{\frac{x}{y+z}}=\frac{2x}{2\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)

Tương tự: \(\sqrt{\frac{y}{z+x}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)

Cộng vế với vế:

\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{z+x}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" không xảy ra

 ๖ۣۜDevil
Xem chi tiết
An Trần
8 tháng 3 2019 lúc 15:12

\(VT=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=2+\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\)

Bài toán trở thành \(\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\ge\frac{x+y+z}{3\sqrt{xyz}}\)

Áp dụng bất đẳng thức AM-GM:

\(\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\ge3\sqrt[3]{\frac{z^3}{xyz}}=\frac{3z}{\sqrt[3]{xyz}}\)

Tương tự:

\(\frac{y}{x}+\frac{y}{z}+\frac{y}{y}\ge\frac{3y}{\sqrt[3]{xyz}}\)

\(\frac{x}{z}+\frac{x}{y}+\frac{x}{x}\ge\frac{3x}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow VT+3\ge3+\frac{3}{\sqrt[3]{xyz}}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{3\left(x+y+z\right)}{\sqrt[3]{xyz}}\)\(\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Is it true?

Easylove
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2020 lúc 22:37

\(\frac{1}{1+x}\ge1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự: \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\) ; \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân vế với vế:

\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow xyz\le\frac{1}{8}< 8\) (đpcm)

Chắc bạn ghi sai đề bài :)

Nguyễn Minh Chiến
Xem chi tiết
Võ Hồng Phúc
20 tháng 11 2019 lúc 22:23

Áp dụng BĐT AM - GM:

\(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2\left(1-x^2\right)}}\ge2x^3\)

Tương tự ta CM được:

\(\frac{y^2}{\sqrt{1-y^2}}=\frac{y^3}{\sqrt{y^2\left(1-y^2\right)}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}=\frac{z^3}{\sqrt{z^2\left(1-z^2\right)}}\ge2z^3\)

Cộng vế với vế 3 bất đẳng thức trên, ta được:

\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)

bạn xem lại đề xem, mình làm thấy dấu ''='' không xảy ra

Khách vãng lai đã xóa
Nguyễn Việt Lâm
20 tháng 11 2019 lúc 22:23

\(\frac{x^2}{\sqrt{1-x^2}}=\frac{2x^3}{2x\sqrt{1-x^2}}\ge\frac{2x^3}{x^2+1-x^2}=2x^3\)

Tương tự: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng vế với vế:

\(VT\ge2\left(x^3+y^3+z^3\right)=2\)

Dấu "=" ko xảy ra nên BĐT sai, vế trái lớn hơn vế phải 1 cách tuyệt đối.

BĐT đúng là: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)

Khách vãng lai đã xóa
Nguyễn Minh Chiến
8 tháng 11 2019 lúc 14:13

@Nguyễn Việt Lâm

Khách vãng lai đã xóa
Nguyễn Việt Anh
Xem chi tiết
Quang Trung
30 tháng 5 2021 lúc 15:52

Đặt biểu thức trên là A

\(A=x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\)

\(=\left(x-y\right)^2+\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}+2xy\ge2\sqrt{\left(x-y\right)^2\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}}+2xy\)

\(=2\sqrt{\left(xy-1\right)^2}+2xy\)

\(=2\left|xy-1\right|+2xy\)

Áp dụng bđt Cô si 

- Nếu thấy \(xy\ge1\Rightarrow A\ge2xy-2+2xy=4xy-2\ge2\)

- Nếu \(xy< 1\Rightarrow A>-2xy+2+2xy=2\)

Vậy : \(A\ge2\left(đpcm\right)\)

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
30 tháng 5 2021 lúc 16:01

Ta có:Xét hiệu \(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2-2=\left(x-y\right)^2+\left(\frac{xy-1}{x-y}\right)^2+2\left(xy-1\right)\ge0\)

\(=\left(x-y+\frac{xy-1}{x-y}\right)^2\ge0\)

\(\Rightarrow x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\left(đpcm\right)\)

Khách vãng lai đã xóa