chứng minh các biểu thức sau luôn đạt giá trị âm
a)-x2+2x-5
b)-x2+3x-7
Chứng minh rằng các biểu thức sau có giá trị luôn âm với mọi giá trị của biến a) A = 4 – x2 + 2x b) B = (x + 3)(4 – x) . giúp vớiiiiii :)
a. Đề sai, với \(x=0\Rightarrow A=4>0\)
b. Đề sai, với \(x=0\Rightarrow B=12>0\)
Cho biểu thức: A = (x + 1)(x – 2) – x(2x – 3) + 4 + 2x2
a) Chứng minh: A = x2 + 2x + 2
b) Tính giá trị của biểu thức A khi x =
c) Chứng minh biểu thức A luôn dương với mọi x.
a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)
\(=x^2-x-2-2x^2+3x+2x^2+4\)
\(=x^2+2x+2\)
\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)
Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến
R=-x2-y2+8x+4y-21
-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2
Ta có : -(x-4)2<= 0
suy ra: -(x-4)2-(y-2)2<=0 (dpcm)
Cho biểu thức A=\(\dfrac{1}{x-1}\)+\(\dfrac{3x^2}{1-x^3}\)+\(\dfrac{2x}{x^2+x+1}\)với x≠1
a) Rút gọn biểu thức A
b)Chứng minh với mọi x≠1 thì biểu thức A luôn nhận giá trị âm
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến
(x - 5).(3x + 3) - 3x.(x - 3) + 3x + 7
bạn chỉ cần nhân phá ngoặc ra rồi ghép các hạng tử có cùng biến là xong
\(\left(x-5\right)\left(3x+3\right)-3x\left(x-3\right)+3x+7=3x^2-12x-15-3x^2+9x+3x+7\)=-8
=>đpcm
x − 5 3x + 3 − 3x x − 3 + 3x + 7
= 3x^2 − 12x − 15 − 3x^2 + 9x + 3x+ 7
=-8
=>đpcm
(
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến
P=(x2+x+1)(x2-1+1)(x4-x2+1)
tập hợp các giá trị x nguyên để biểu thức D=\(\left|2x+2,5\right|+\left|2x-3\right|\) đạt giá trị nhỏ nhất
Ta có \(\left|2x+5\right|+\left|2x-3\right|\) >= |2x +5 - 2x +3| =|8| =8
dấu "=" xảy ra \(\Leftrightarrow\) (2x+5)(2x-3)>0
Lập bảng xét dấu:
x -2,5 1,5
2x + 5 - 0 + | +
2x -3 - | - 0 +
Tích + 0 - 0 +
<=> X < -2,5
Và X > 1,5
Vây min D = 8 <=> x <-2,5 và x >1,5
Cho A=2x2-5x;B=-x2+x+3;C=2x-2
Chứng minh rằng tring 3 biểu thức điA,B,C có ít nhất một biểu thức luôn có giá trị không âm với mọi giá trị của x
Bài 1 : Tìm giá trị nhỏ nhất của các biểu thức sau :
a, A = x2 + 3x + 4 | d, D = 4x2+ 4x - 24 |
b, B = 2x2 - x + 1 | e, E = x2 + 6x - 11 |
c, C = 5x2 + 2x - 3 | g, G = \(\dfrac{1}{4}x^2+x-\dfrac{1}{3}\) |
MONG MỌI NGƯỜI GIÚP VỚI Ạ !!! EM CẦN GẤP !
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
d: Ta có: \(D=4x^2+4x-24\)
\(=4x^2+4x+1-25\)
\(=\left(2x+1\right)^2-25\ge-25\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
e: ta có: \(E=x^2+6x-11\)
\(=x^2+6x+9-20\)
\(=\left(x+3\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=-3