(trình bày) Giải phương trình:
𝑥2−3𝑥=−2
1.Giải các phương trình saua.
a.√4𝑥−9=2𝑥−5
b.√𝑥2−7𝑥+10=3𝑥−1
c.√𝑥+4−√1−𝑥=√1−2𝑥
d.|3x-1|=x+3
e.|x+2|=|6-3x|
Tìm mệnh đềphủđịnh mệnh đề𝐴:"∀𝑥∈𝑅,𝑥2−3𝑥=5".
A. 𝐴:"∃𝑥∈𝑅,𝑥2−3𝑥>5".
B. 𝐴:"∃𝑥∈𝑅,𝑥2−3𝑥≠5".
C. 𝐴:"∃𝑥∈𝑅,𝑥2−3𝑥<5".
D. 𝐴:"∃𝑥∉𝑅,𝑥2−3𝑥=5".
Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử:
p) 𝑥3 − 3𝑥2 + 3𝑥 − 1 + 2(𝑥2 − 𝑥)
r) 𝑥(𝑦2 − 𝑧2 ) + 𝑦(𝑧2 − 𝑥2 ) + 𝑧(𝑥2 − 𝑦2 )
AI giúp mình với!
p) \(x^3-3x^2+3x-1+2\left(x^2-x\right)\\ =\left(x^3-1\right)-\left(3x^2-3x\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1-3x+2x\right)\\ =\left(x-1\right)\left(x^2+1\right)\)
p:Ta có: \(x^3-3x^2+3x-1+2\left(x^2-x\right)\)
\(=\left(x-1\right)^3+2x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1+2x\right)\)
\(=\left(x-1\right)\left(x^2+1\right)\)
r) Tham khảo: https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-y-2-z-2-y-z-2-x-2-z-x-2-y-2-thanh-nhan-tu-faq343704.html
Bài 1:Làm tính nhân
a. −4𝑥3 ( 𝑥2 −3𝑥 + 2 )
b. -\(\dfrac{2}{5}\)𝑥2( 5𝑥3 + 10𝑥2 − 15𝑥 )
a: \(-4x^3\left(x^2-3x+2\right)=-4x^5+12x^4-8x^3\)
b: \(-\dfrac{2}{5}x^2\left(5x^3+10x^2-15x\right)=-2x^5-4x^4+6x^3\)
Bài 11. Cho phương trình: 𝑥^2 − 2𝑚𝑥 + 𝑚^2 − 1 = 0 (1)
1. Giải phương trình khi m = 2.
2. Tìm m để phương trình có hai nghiệm 𝑥1 , 𝑥2 thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\)
1. Bạn tự giải
2. Phương trình có 2 nghiệm khác 0 khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m^2-1\right)>0\\m^2-1\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\pm1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\Rightarrow4\left(x_1+x_2\right)=3x_1x_2\)
\(\Leftrightarrow8m=3\left(m^2-1\right)\)
\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)
(𝑥−1)3−(𝑥+1)(𝑥2−𝑥+1)−(3𝑥+1)(1−3𝑥)
\(\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+1\right)-\left(1-9x^2\right)\\ =x^3-3x^2+3x-1-x^3-1-1+9x^2\\ =6x^2+3x-3\)
a) (𝑥2+1)(𝑥−3)−(𝑥−3)(𝑥2+3𝑥+9)
b) (𝑥+2)2+𝑥(𝑥+5)
c) (5𝑥+4𝑦)(5𝑥−4𝑦)−24𝑥2+15𝑦2
a, (x2+1)(x-3)-(x-3)(x2+3x+9)
=(x-3)(x2+1+x2+3x+9)
(x-3)(2x2+3x+10)
a) (𝑥2+1)(𝑥−3)−(𝑥−3)(𝑥2+3𝑥+9)b) (𝑥+2)2+𝑥(𝑥+5)c) (5𝑥+4𝑦)(5𝑥−4𝑦)−24𝑥2+15𝑦2
a) (𝑥2+1)(𝑥−3)−(𝑥−3)(𝑥2+3𝑥+9)
b) (𝑥+2)2+𝑥(𝑥+5)
c) (5𝑥+4𝑦)(5𝑥−4𝑦)−24𝑥2+15𝑦2
a) \(\left(x^2+1\right)\left(x-3\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left[x^2+1-\left(x^2+3x+9\right)\right]\)
\(=\left(x-3\right)\left(x^2+1-x^2-3x-9\right)\)
\(=\left(x-3\right)\left(-3x-8\right)\)
b) \(\left(x+2\right)^2+x\left(x+5\right)\)
\(=x^2+4x+4+x^2+5x\)
\(=2x^2+9x+4\)
c) \(\left(5x+4y\right)\left(5x-4y\right)-24x^2+15y^2\)
\(=25x^2-16y^2-24x^2+15y^2\)
\(=x^2-y^2\)
\(=\left(x+y\right)\left(x-y\right)\)