Cho tứ giác ABCD biết:
\(\widehat{B}+\widehat{C}=200^o;\widehat{B}+\widehat{D}=180^o;\widehat{C}+\widehat{D}=120^o\)
Tính các góc của tứ giác ABCD
Cho tứ giác ABCD biết:
\(\widehat{B}+\widehat{C}=200^o;\widehat{B}+\widehat{D}=180^o;\widehat{C}+\widehat{D}=120^o\)
Tính các góc của tứ giác ABCD
góc C-góc D=200-180=20 độ
góc C+góc D=120 độ
=>góc C=(20+120)/2=70 độ và góc D=120-70=50 độ
góc B=200-70=130 độ
góc A=180-70=110 độ
1/cho tứ giá lồi ABCD có AB=BC=CD=a , \(\widehat{BAD}=75^o,\widehat{ADC}=45^o\).tính AD
2/cho tứ giác ABCD có\(AB-6\sqrt{3},CD=12,\widehat{A}=60^o,\widehat{B}=150^o,\widehat{D}=90^o\). tính BC
Cho tứ giác ABCD, biết: \(\widehat{B}=\widehat{A}+20^o;\widehat{C}=3\widehat{A};\widehat{D}-\widehat{C}=20^o\).
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?
Tính các góc của tứ giác ABCD biết
\(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}=\widehat{C}-\widehat{D}=10^o\)
góc C-góc D=10
=>góc C=góc D+10
góc B-góc C=10
=>góc B=10+góc C=góc D+20
góc A-góc B=10
=>góc A=góc B+10=góc D+30
góc A+góc B+góc C+góc D=360
=>4*góc D+60=360
=>góc D=75 độ
=>góc C=85 độ; góc B=95 độ; góc A=105 độ
Cho tứ giác ABCD có \(\widehat{B}=110^o;\widehat{C}=120^o;\widehat{D}=60^o\)
a) Tính góc A
b) Chứng minh tứ giác ABCD là hình thang
c) Gọi M,N lần lượt là trung điểm của AB và CD. Biết BC=8cm,AD=12cm. Tính độ dài đoạn thẳng MN
Giải tam giác ABC trong các trường hợp sau:
a) \(AB = 14,AC = 23,\widehat A = {125^o}.\)
b) \(BC = 22,4;\widehat B = {64^o};\widehat C = {38^o}.\)
c) \(AC = 22,\widehat B = {120^o},\widehat C = {28^o}.\)
d) \(AB = 23,AC = 32,BC = 44\)
a) Ta cần tính cạnh BC và hai góc \(\widehat B,\widehat C.\)
Áp dụng định lí cosin, ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {14^2} + {23^2} - 2.14.23.\cos {125^o}\\ \Rightarrow BC \approx 33\end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{33}}{{\sin {{125}^o}}} = \frac{{23}}{{\sin B}} = \frac{{14}}{{\sin C}}\\ \Rightarrow \sin B = \frac{{23.\sin {{125}^o}}}{{33}} \approx 0,57\\ \Rightarrow \widehat B \approx {35^o} \Rightarrow \widehat C \approx {20^o}\end{array}\)
b) Ta cần tính góc A và hai cạnh AB, AC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {64^o} - {38^o} = {78^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{22}}{{\sin {{78}^o}}} = \frac{{AC}}{{\sin {{64}^o}}} = \frac{{AB}}{{\sin {{38}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}AC = \sin {64^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 20,22\\AB = \sin {38^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 13,85\end{array} \right.\end{array}\)
c) Ta cần tính góc A và hai cạnh AB, BC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {120^o} - {28^o} = {32^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{BC}}{{\sin {{32}^o}}} = \frac{{22}}{{\sin {{120}^o}}} = \frac{{AB}}{{\sin {{28}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}BC = \sin {32^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 13,5\\AB = \sin {28^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 12\end{array} \right.\end{array}\)
d) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)
Áp dụng hệ quả của định lí cosin, ta có:
\(\begin{array}{l}\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}};\cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2.BC.BA}}\\ \Rightarrow \cos A = \frac{{{{32}^2} + {{23}^2} - {{44}^2}}}{{2.32.23}} = \frac{{ - 383}}{{1472}};\cos B = \frac{{{{44}^2} + {{23}^2} - {{32}^2}}}{{2.44.23}} = \frac{{131}}{{184}}\\ \Rightarrow \widehat A \approx {105^o},\widehat B = {44^o}36'\\ \Rightarrow \widehat C = {30^o}24'\end{array}\)
Cho tứ giác ABCD có \(\widehat A = {60^o},\widehat B = {70^o},\widehat C = {80^o}\). Khi đó, \(\widehat D\) bằng:
A. 130o
B. 140o
C. 150o
D. 160o
ABCD là tứ giác nên:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\\ \Rightarrow \widehat D = {360^o} - \widehat A - \widehat B - \widehat C = {360^o} - {60^o} - {70^o} - {80^o} = {150^o}\end{array}\)
Chọn đáp án C
Cho tứ giác ABCD có:
\(\widehat{A}=78^o;\widehat{B}=115^o\) góc ngoài tại đỉnh C bằng 102o. Tính D
Gọi góc ngoài đỉnh C là \(\widehat{C}'\)
Ta có: \(\widehat{C}+\widehat{C}'=180^o\)
\(\Rightarrow\widehat{C}=180^o-\widehat{C}'=180^o-102^o=78^o\)
Tổng của bốn góc trong tứ giác là:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{D}=360^o-\left(78^o+115^o+78^o\right)\)
\(\Rightarrow\widehat{D}=89^o\)
góc C=180-102=78 độ
góc D=360 độ-78 độ-115 độ-78 độ=89 độ
Tính các góc của hình thang ABCD , có đáy là AB , CD . Biết rằng
a) \(\widehat{A}-\widehat{D}=20^o;\widehat{B}=2\widehat{C}\)
b) \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}=20^o\)
a: góc A-góc D=20 độ
góc A+góc D=180 độ
=>góc A=(20+180)/2=100 độ và góc D=180-100=80 độ
góc B=2*góc C
góc B+góc C=180 độ
=>góc B=2/3*180=120 độ; góc C=180-120=60 độ
b: góc B-góc C=20 độ
góc B+góc C=180 độ
=>góc B=(180+20)/2=100 độ và góc C=80 độ
=>góc A=100+20=120 độ
=>góc D=60 độ
Cho Tứ giác ABCD có AD=DC=CB; \(\widehat{C}=130^o,\widehat{D}=110^o\). Tính \(\widehat{A}\),\(\widehat{B}\)