Tìm cặp số nguyên x, y thỏa mãn:
\(x+y+x\times y=3\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm cặp số nguyên (x, y) thỏa mãn : |x+3|+|x-1|=3-y^2-2y
Ta có:
\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(3-y^2-2y=4-\left(y^2+2y+1\right)=4-\left(y+1\right)^2\le4\)
\(\Rightarrow\left|x+3\right|+\left|x-1\right|\ge3-y^2-2y\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+3\right)\left(1-x\right)\ge0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le1\\y=-2\end{matrix}\right.\)
Các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(-3;-2\right);\left(-2;-2\right);\left(-1;-2\right);\left(0;-2\right);\left(1;-2\right)\)
Tìm cặp số nguyên (x ; y) thỏa mãn:
(x-3) (y-5) = -7
(x-3)(y-5)=-7
=>\(\left(x-3;y-5\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(4;-2\right);\left(-4;6\right);\left(2;12\right);\left(10;4\right)\right\}\)
\(5x-y\left(x-3\right)=8\)
\(\Leftrightarrow5x-15-y\left(x-3\right)=8-15\)
\(\Leftrightarrow5\left(x-3\right)-y\left(x-3\right)=-7\)
\(\Leftrightarrow\left(5-y\right)\left(x-3\right)=-7\)
Bảng giá trị:
5-y | -7 | -1 | 1 | 7 |
x-3 | 1 | 7 | -7 | -1 |
x | 4 | 10 | -4 | 2 |
y | 12 | 6 | 4 | -2 |
Vậy các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(4;12\right);\left(10;6\right);\left(-4;4\right);\left(2;-2\right)\)
Tìm các cặp số nguyên ( x;y) thỏa mãn 1 + \(\sqrt{x+y+3}\)= \(\sqrt{x}+\sqrt{y}\)
Tìm cặp số nguyên x,y thỏa mãn x\-3=7\y
theo bài ra ta có: x/-3=7/y
=>x.y=(-3).7=-21=(-3).7=3.(-7)=21.(-1)=1.(-21)
vì x,y là số nguyên
=>(x;y) thuộc (3;-7);(-7;3);(-3;7);(7;-3);(-1;21);(21;-1);(1;-21);(-21;1)
Ta có: \(\frac{x}{-3}=\frac{7}{y}\Rightarrow x.y=-3.7=-21\)
Vậy bạn tìm các cặp số có tích là -21 nhé
Tìm các cặp số nguyên (x;y) thỏa mãn y(x + 3) - 5x - 15 = 2
\(y\left(x+3\right)-5x-15=2\\ \Rightarrow y\left(x+3\right)-\left(5x+15\right)=2\\ \Rightarrow y\left(x+3\right)-5\left(x+3\right)=2\\ \Rightarrow\left(y-5\right)\left(x+3\right)=2\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y-5,x+3\in Z\\y-5,x+3\inƯ\left(2\right)\end{matrix}\right.\)
Ta có bảng:
x+3 | 1 | 2 | -1 | -2 |
y-5 | 2 | 1 | -2 | -1 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;7\right);\left(-1;6\right);\left(-4;3\right);\left(-5;4\right)\right\}\)
=>y.(x+3)-5(x+3)=2
=>(y-5).(x+3)=2
x+3 | 1 | -1 | 2 | -2 |
y-5 | 1 | -1 | 2 | -2 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Tìm cặp số (x ; y) nguyên dương thỏa mãn xy = 3(y-x)
tìm các cặp số nguyên (x;y) thỏa mãn : x-y+2xy =3