(5x+1)2=36/49
b, (x-2/9)3=2/3
1.Tìm số nguyên x biết:
a)X2=49
b)(5x+1)2=121
c)3x+36=-7x-64
d)-5x-1178=14x+145.
dấu - là âm nha
\(X^2=49\\ Mà:7^2=49;\left(-7\right)^2=49\\ \Rightarrow X=7.hoặc.x=-7\\ ----\\ b,\left(5x+1\right)^2=121=11^2=\left(-11\right)^2\\ Nên:5x+1=11.hoặc.5x+1=-11\\ Nên:5x=10.hoặc.5x=-12\\ Vậy:x=2.hoặc.x=-\dfrac{12}{5}\\ ---\\ 3x+36=-7x-64\\ \Rightarrow3x+7x=-64-36\\ \Rightarrow10x=-100\\ \Rightarrow x=-\dfrac{100}{10}=-10\\ ---\\ -5x-1178=14x+145\\ \Rightarrow14x+5x=-1178-145\\ \Rightarrow19x=-1323\\ \Rightarrow x=\dfrac{-1323}{19}\)
a) (1/2-x/3)2=36/49
b) (3-2/3x)3=-1/64
giúp mình với ạ mình đang cần gắp
\(\left(\dfrac{1}{2}-\dfrac{x}{3}\right)^2=\dfrac{36}{49}\\ \Rightarrow\left(\dfrac{1}{2}-\dfrac{x}{3}\right)^2=\left(\dfrac{6}{7}\right)^2\\ \Rightarrow\dfrac{1}{2}-\dfrac{x}{3}=\pm\dfrac{6}{7}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-\dfrac{x}{3}=\dfrac{6}{7}\\\dfrac{1}{2}-\dfrac{x}{3}=-\dfrac{6}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{5}{14}\\\dfrac{x}{3}=\dfrac{19}{14}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{14}\times3\\x=\dfrac{19}{14}\times3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{15}{14}\\x=\dfrac{57}{14}\end{matrix}\right.\)
\(\left(3-\dfrac{2}{3}x\right)^3=-\dfrac{1}{64}\\ \Rightarrow\left(3-\dfrac{2}{3}x\right)^3=\left(-\dfrac{1}{4}\right)^3\\ \Rightarrow3-\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=3-\left(-\dfrac{1}{4}\right)\\ \Rightarrow\dfrac{2}{3}x=\dfrac{13}{4}\\ \Rightarrow x=\dfrac{13}{4}:\dfrac{2}{3}\\ \Rightarrow x=\dfrac{13}{4}\times\dfrac{3}{2}\\ \Rightarrow x=\dfrac{39}{8}\)
Câu 1 (1,5 điểm). Cho các biểu thức A = 2√x +1/√x -3 và
B =2x+36/x-9 - 9/√x -3 - √x/√x +3 (với x≥0;x≠ 9)
a) Tính giá trị của A khi x = 49
b) Rút gọn biểu thức B.
c) Đặt P = A.B. Tìm tất cả các giá trị của x để P > 1.
a: Thay x=49 vào A, ta được:
\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)
b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)
P>1 khi P-1>0
=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)
=>\(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)
Bài 2: (2 điểm) Tìm x, biết:
a) (3x + 4)2 – (3x – 1)(3x + 1) = 49
b) x2 – 4x + 4 = 9(x – 2)
c) x2 – 25 = 3x - 15
d) (x – 1)3 + 3(x + 1)2 = (x2 – 2x + 4)(x + 2)
a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
b) \(\Rightarrow x^2-13x+22=0\)
\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)
c) \(\Rightarrow x^2-3x-10=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
\(5x-9=5+3x;2^3+0,5x=1,5;\left(5x+1\right)^2=\dfrac{36}{49};\left(\dfrac{-3}{81}\right)^x=-27;2^{x-1}=16\)
a)(x-1)(x^2+5x-2)-x^3+1=0
b)5(x^2+3x)-9(3x+3)=x^2-36
a, Ta có : \(\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\)
=> \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
=> \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
=> \(\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\)
=> \(\left(x-1\right)\left(4x-3\right)=0\)
=> \(\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{1,\frac{3}{4}\right\}\)
b, Ta có : \(5\left(x^2+3x\right)-9\left(3x+3\right)=x^2-36\)
=> \(5x^2+15x-27x-27=x^2-36\)
=> \(5x^2+15x-27x-27-x^2+36=0\)
=> \(4x^2-12x+9=0\)
=> \(\left(2x-3\right)^2=0\)
=> \(x=\frac{3}{2}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{3}{2}\right\}\)
\(a.\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{3}{4}\right\}\)
\(b.5\left(x^2+3x\right)-9\left(3x+3\right)=x^2-36\\ \Leftrightarrow5x^2+15x-27x-27=x^2-36\\ \Leftrightarrow5x^2+15x-27x-27-x^2+36=0\\ \Leftrightarrow4x^2-12x+9=0\\ \Leftrightarrow\left(2x-3\right)^2=0\\ \Leftrightarrow x=\frac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\frac{3}{2}\right\}\)
Chúc bạn học tốt!!!!!!!!!!!
Tính:
a) √16.√25 + √196:√49
b) 36:√2.3^2.18 - √169
c) √√81
d) √3^2 + 4^2
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
\(=4.5+14:7\)
\(=20+2=22\)
b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)
\(=36:\sqrt{18^2}-13\)
\(=36:18-13\)
\(=2-13=-11\)
c) \(\sqrt{\sqrt{81}}\) d) \(\sqrt{3^2}+4^2\)
\(=\sqrt{\sqrt{9^{^2}}}\) \(=3+16\)
\(=\sqrt{9}\) \(=19\)
Giải các phương trình sau
a)(x-1)^2-(x+1)^2=2(x-3)
b)x^2-9=(x-3)(5x+2)
c)(2x+3)^2-3(x-4)(x+4)=(x-2)^2
d)x^2+4x^2-9x-36=0
a: \(\Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\)
=>2x-6=-4x
=>6x=6
hay x=1
b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)
=>(x-3)(-4x+1)=0
=>x=3 hoặc x=1/4
c: \(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)-x^2+4x-4=0\)
\(\Leftrightarrow3x^2+16x+5-3x^2+48=0\)
=>16x+53=0
hay x=-53/16
d: \(\Leftrightarrow x^3+4x^2-9x-36=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-9\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
b)x^2-9=(x-3)(5x+2)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(1-4x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\1-4x=0\end{matrix}\right.\left\{{}\begin{matrix}x=0+3\\x=1:4\end{matrix}\right.\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(a,\left(x-1\right)^2-\left(x+1\right)^2=2\left(x-3\right)\\ \Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\\ \Leftrightarrow-4x-2x=-6\\ \Leftrightarrow-6x=-6\\ \Leftrightarrow x=1\)
\(b,x^2-9=\left(x-3\right)\left(5x+2\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(c,\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2\\ \Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4\\ \Leftrightarrow4x^2+12x+9-3x^2+48-x^2+4x-4=0\\ \Leftrightarrow16x+53=0\\ \Leftrightarrow x=\dfrac{-53}{16}\)
\(d,x^3+4x^2-9x-36=0\\ \Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\\ \Leftrightarrow\left(x^2-9\right)\left(x+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=-4\end{matrix}\right.\)
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35