Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khaaaaaa
Xem chi tiết

\(2\left(x+1\right)^2+3y^2=21\)

Ta có: x,y nguyên

=>\(\left(x+1\right)^2;y^2\) là các số chính phương

mà \(2\left(x+1\right)^2+3y^2=21\) 

nên \(\left[2\left(x+1\right)^2;3y^2\right]\in\left\{\left(18;3\right)\right\}\)

=>\(\left(\left(x+1\right)^2;y^2\right)\in\left(9;1\right)\)

=>\(\left(x+1;y\right)\in\left\{\left(3;-1\right);\left(3;1\right);\left(-3;-1\right);\left(-3;1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(2;-1\right);\left(2;1\right);\left(-4;-1\right);\left(-4;1\right)\right\}\) 

28 Vũ Mình Phúc
Xem chi tiết
Nguyễn Văn A
2 tháng 3 2023 lúc 14:59

\(x^2y^2-x^2-3y^2-2x-1=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)

Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.

Đặt \(x^2-3=a^2\) (a là số tự nhiên).

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)

Ta có x+a>x-a. Lập bảng:

x+a3-1
x-a1-3
x2-2

Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)

Với \(x=-2\)\(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)

Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)

 

Cát Cát Trần
Xem chi tiết
Diệp Liên
Xem chi tiết
Trịnh Ngọc Hà
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Kudo Shinichi
9 tháng 6 2023 lúc 21:36

`2xy^2 + 2x + 3y^2 = 4`

`<=> 2x(y^2 + 1) + 3(y^1 + 1) = 7`

`<=> (2x + 3)(y^2 + 1) = 7`

`=> (2x+3),(y^2 + 1) \in Ư(7) = {-7;-1;1;7}`

Mà `y^2 + 1 \ge 1` nên không thể nhận giá trị âm, xét `2` trường hợp:

`-` Trường hợp `1:`

`2x + 3 = 7 <=> 2x = 4 <=> x = 2(TM)`

`y^2 + 1 = 1 <=> y^2 = 0 <=> y = 0 (TM)`

`-` Trường hợp `2:`

`2x + 3 = 1 <=> 2x = -2 <=> x = -1 (TM)`

`y^2 + 1 = 7 <=> y^2 = 6 <=> y = +- \sqrt{6}(Loại)`

Vậy `(x;y)=(2;0)`

Vũ Minh Phương
Xem chi tiết
Xyz OLM
6 tháng 8 2020 lúc 22:33

\(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}=\frac{1}{x-y}.\frac{2\left(x-y\right)}{x+2}=\frac{2}{x+2}\)

Để B là số nguyên 

=> \(\frac{2}{x+2}\)là số nguyên

=> \(2⋮x+2\)

=> \(x+2\inƯ\left(2\right)\)

=> \(x+2\in\left\{1;-1;2;-2\right\}\)

=> \(x\in\left\{-1;-3;0;-4\right\}\)

Vậy các cặp (x ;y) thỏa mãn là (-1 ; y) ; (-3 ; y) ; (0 ; y) ; (-4 ; y) với mọi y nguyên

Khách vãng lai đã xóa
Lê Nguyễn Ngân Nhi
Xem chi tiết
soyeon_Tiểu bàng giải
21 tháng 5 2016 lúc 13:25

a. Đê A nguyên thi 5x+1 chia hêt cho x-2            Suy ra 5x-10+11 chia hêt cho x-2                    Suy ra 5.(x-2)+11 chia het cho x-2                     Vi 5.(x-2) chia het cho x-2 nen 11 chia het cho x-2                                                            Suy ra x-2 thuôc {1;-1;11;-11}                      Suy ra x thuôc {3;1;13;-9}                             Vay x thuoc {3;1;13;-9}                                 b. A=1/10+1/15+1/21+...+1/171+1/190   1/2A=1/20+1/30+1/42+...+1/342+1/380 1/2A=1/4.5+1/5.6+1/6.7+...+1/18.19+1/19.20                                                                   1/2A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/18-1/19+1/19-1/20=1/4-1/20=1/5           A=1/5:1/2=1/5.2=2/5

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Đức Trí
3 tháng 9 2023 lúc 23:33

\(2xy^2+2x+3y^2=4\left(x;y\inℤ\right)\)

\(\Leftrightarrow2x\left(y^2+1\right)+3y^2+3-3=4\)

\(\Leftrightarrow2x\left(y^2+1\right)+3\left(y^2+1\right)=7\)

\(\Leftrightarrow\left(2x+3\right)\left(y^2+1\right)=7\)

\(\Leftrightarrow\left(2x+3\right);\left(y^2+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)

\(TH1:\left\{{}\begin{matrix}2x+3=-1\\y^2+1=-7\left(loại\right)\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}2x+3=1\\y^2+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\y^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\pm\sqrt[]{6}\left(loại\right)\end{matrix}\right.\)

\(TH3:\left\{{}\begin{matrix}2x+3=-7\\y^2+1=-1\left(loại\right)\end{matrix}\right.\)

\(TH1:\left\{{}\begin{matrix}2x+3=7\\y^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\) thỏa điều kiện đề bài

Kiều Vũ Linh
3 tháng 9 2023 lúc 23:37

2xy² + 2x + 3y² = 4

2xy² + 2x + 3y² + 3 = 4 + 3

(2xy² + 2x) + (3y² + 3) = 7

2x(y² + 1) + 3(y² + 1) = 7

(y² + 1)(2x + 3) = 7

TH1: 2x + 3 = 1 và y² + 1 = 7

*) 2x + 3 = 1

2x = -2

x = -1 (nhận)

*) y² + 1 = 7

y² = 6

y = ±√6 (loại)

TH2: 2x + 3 = -1 và y² + 1 = -7

*) 2x + 3 = -1

2x = -4

x = -2 (nhận)

*) y² + 1 = -7

y² = -8 (vô lý)

TH3: 2x + 3 = 7 và y² + 1 = 1

*) 2x + 3 = 7

2x = 4

x = 2 (nhận)

*) y² + 1 = 1

y² = 0

y = 0 (nhận)

TH4: 2x + 3 = -7 và y² + 1 = -1

*) 2x + 3 = -7

2x = -10

x = -5 (nhận)

*) y² + 1 = -1

y² = -2 (vô lý)

Vậy ta được cặp giá trị (x; y) thỏa mãn: (2; 0)

Đào Trí Bình
4 tháng 9 2023 lúc 8:56

x = 2

y = 0