Cho hcn ABCD có AB=5, BC=12,B VUÔNG AC tại H. Cmr cotg BAC+ cotg BCA= AC/AH
cho tam giác ABC có AB=AC. Kẻ AH vuông với BC tại H. có góc BAC= 80 độ
a/ C/M HB =HC
B/ C/M AH là phân giác góc BAC. Tính góc BCA
a,
Xét tamgiác ABHva tam giác ACH
AB Bằng AC
BH Bằng CH
AH la canh chung
b,TÔNG 3 GOC cua tam giac bằng 180
Vì tia AH là goc vuông (90 đọ)
Mà goc B bằng goc C Nên tia AH là tia fan giác của tam giác BAC
+
b,
cho HCN ABCD có AB = 5cm , BC = 12 cm .Vẽ BH vuông góc vs AC tại H kéo dài cắt AD tại K . a, giải tam giác ABC b, đg phan giác của góc ABC cắt AC tại M .tính BM c, C/M : AH * AC = BK * BH
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(AH\cdot AC=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABK vuông tại A có AH là đường cao ứng với cạnh huyền BK, ta được:
\(BK\cdot BH=AB^2\)(2)
Từ (1) và (2) suy ra \(AH\cdot AC=BK\cdot BH\)
Cho tam giác ABC có 3 góc nhọn, BC=a, AC=b, AB=c.
a) Chứng minh rằng: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) \(S_{ABC}=\frac{1}{2}bc.sinA\)
c) Cho đường cao AH=h.
Chứng minh rằng: cotg B + cotg C = 2 khi và chỉ khi a=2h
a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
NHỚ TK MK NHA
cho tam giác ABC cân tại A.tia AH là tia phân giác của góc BAC(H thuộc BC).Kẻ EH vuông góc với AB,HF vuông góc với AC( E thuộc AB,F thuộc AC)
a) CMR: HE=HF
b)CMR: EF song song BC
C) biết AB=15cm,BC=18cm.tính AH
Cho HCN ABCD có AB = 5cm, BC = 12cm. Vẽ BH vuông góc vs AC tại H và kéo dài cắt AD tại K.
a) Giải ∆ABC
b) Đường phân giác của góc ABC cắt AC tại M. Tính BM.
c) Chứng minh: AH × AC = BK × BH.
a: Xét ΔABC vuông tại B có \(AC^2=BA^2+BC^2\)
=>\(AC^2=5^2+12^2=169\)
=>AC=13(cm)
Xét ΔABC vuông tại B có \(sinACB=\dfrac{AB}{AC}=\dfrac{5}{13}\)
=>\(\widehat{ACB}\simeq23^0\)
\(\Leftrightarrow\widehat{BAC}=90^0-\widehat{ACB}=67^0\)
b: Xét ΔBAC có BM là phân giác
nên \(BM=\dfrac{2\cdot BA\cdot BC}{BA+BC}\cdot cos\left(\dfrac{\widehat{ABC}}{2}\right)\)
\(=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{60\sqrt{2}}{17}\left(cm\right)\)
c: Xét ΔABK vuông tại A có AH là đường cao
nên \(BH\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BK=AH\cdot AC\)
cho tam giác ABC có AB = AC gọi H là trung điểm của BC . CMR
a, AH là tia p/g của BAC
b, AH vuông góc vs BC tại A
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C
Bài 1:
\(\cos\alpha=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{4}{3}\)
1/ Cho HCN ABCD(AD<AB)có DH vuông góc với AC tại H
A/Biết AD=6cm,AH=3,6cm.Tính AC và AB
Áp dụng hệ thức lượng ta có:
AD2 = AH.AC
=> AC = AD2/AH = 10
Áp dụng Pytago ta có:
AD2 + DC2 = AC2
=> DC2 = AC2 - AD2 = 64
=> DC = 8
=> AB = DC = 8
cho tam giác ABC nhọn, góc BAC= 70 độ kẻ BK vuông góc với AC tại K và CI vuông góc với AB tại I Gọi H là giao điểm BC và CI a) CMR: AH vuông góc BC b) Tính góc BHC
a: Xét ΔABC có
BK,CI là đường cao
BK cắt CI tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc HBC+góc HCB
=90 độ-góc ABC+90 độ-góc ACB
=180 độ-góc ABC-góc ACB
=góc BAC=70 độ
=>góc BHC=110 độ