tính tổng:
S=1+2+22+23+...+22016
Tìm dư của phép chia số A = 22021 + 22022 chia cho B = 1 + 2 + 22 + 23 +....+22016 + 22017
Chứng minh rằng
D = 2 + 22 + 23+................+ 22016 chia hết cho 3 , 7 , 15
A=21+22+23+...+22016
chứng tỏ A chia hết cho 7
\(A=2^1+2^2+2^3+...+2^{2016}\)
\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)
\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)
\(\Rightarrow dpcm\)
Tìm số tự nhiên x biết :
a, 2.(x – 5)+7 = 77
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
a, 2.(x – 5)+7 = 77
<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
<=> x - 1 3 - 3 + 2 4 = 14
<=> x - 1 3 = 14 + 3 - 16 = 1
<=> x – 1 = 1 <=> x = 2
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A = 2 + 2 2 + 2 3 + . . . + 2 2017
=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )
=> A = 2 2017 - 1
Ta có: 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 => 2 2017 - 1 = 2 x - 1 - 1 => x = 2018
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
<=> 5 2 x - 3 = 5 2 . 3 + 5 2 . 2
<=> 5 2 x - 3 = 5 2 . ( 3 + 2 )
<=> 5 2 x - 3 = 5 3
<=> 2x – 3 = 3 => x = 3
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
B=1 + 1/2 + 1/3 + 1/4 +1/5 + .....+ 1/22016 - 2 + 1/22016 - 1 > 1008
Tính tổng:S=1+2+3+4+...+2107+2017
Tính tổng:S=2+4+6+...+98+100
Đang cần gấp sắp đi học
S=2+4+6+...+98+100
S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)
S=1+2+3+4+...+2016+2017
S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)
1.Số lượng số của S= (2017-1)+1=2017 số
tổng=(2016+1).(2016:2)+2017=2 035 153
2.Số lượng số của S=(100-2):2+1=50 số
tổng=(100+2).(50:2)=2 550
Tính tổng:S = 1^2+2^2+3^2+....+n^2
\(S=1^2+2^2+3^2+...+n^2\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)
Theo dạng tổng quát: \(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{2n\left(n+1\right)\left(n+2\right)}{6}-\frac{3n\left(n+1\right)}{6}\)
\(=\frac{2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)}{6}\)
\(=\frac{n\left(n+1\right).\left[2\left(n+2\right)-3\right]}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Vậy \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có : \(S=1^2+2^2+3^2+...+\)\(n^2\)
\(\Rightarrow S=\frac{n.\left(n+1\right)\left(n+2\right)}{2}\)
Xin lỗi mình nhớ nhầm công thức : \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Lập tính tính tổng:
S = \(1!+2!+3!+.....+n!\) (n được nhập vào từ bàn phím) .
uses crt;
var n,i:longint;
s:real;
{------------ham-tinh-giai-thua---------------------}
function gthua(x:longint):real;
var i:longint;
gt:real;
begin
gt:=1;
for i:=1 to x do
gt:=gt*i;
gthua:=gt;
end;
{------------chuong-trinh-chinh------------------}
begin
clrscr;
write('Nhap n='); readln(n);
s:=0;
for i:=1 to n do
s:=s+gthua(i);
writeln(s:0:0);
readln;
end.
Tính tổng:S=(1-1/2).(1-1/3).(1-1/4). ... .(1-1/2016)
\(S=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2016}{2016}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}=\frac{1}{2016}\)
\(S=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2015}{2016}\)
\(S=\frac{1\cdot2\cdot3\cdot...\cdot2015}{2\cdot3\cdot4\cdot...\cdot2016}\)
\(S=\frac{1}{2016}\)
S=\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x..x\left(1-\frac{1}{2016}\right)\)
S=\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2015}{2016}\)
S=1-\(\frac{2015}{2016}=\frac{1}{2016}\)