Phân tích thành nhân tử:
a, x^2-x-y^2-y
b, x^2-2xy+y^2-z^2
Phân tích đa thức thành nhân tử:
a)16xy^2-12xy+24x^y
b)x^3-x^2-x+1
c)16-x^2+2xy-y^2
d)x^2-x-20
a. 16xy2 - 12xy + 24x2y
= 4xy(4y - 3 + 6x)
c. 16 - x2 + 2xy - y2
= 42 - (x2 - 2xy + y2)
= 42 - (x - y)2
= (4 - x + y)(4 + x - y)
b: \(x^3-x^2-x+1=\left(x-1\right)^2\left(x+1\right)\)
d: \(x^2-x-20=\left(x-5\right)\left(x+4\right)\)
Bài tập 1. Phân tích đa thức thành nhân tử:
a. 5x^2-5x+xy-y
b. x^2-2xy+y^2-9
\(a,=5x\left(x-1\right)+y\left(x-1\right)=\left(5x+y\right)\left(x-1\right)\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
a)5x2-5x+xy-y=(5x2-5x)+(xy-y)=5x(x-1)+y(x-1)=(x-1)(5x+y)
b)x2-2xy+y2-9=(x2-2xy+y2)-9=(x-y)2-32=(x-y-3)(x-y+3)
Phân tích đa thức sau thành nhân tử:
a. x\(^3\) - 4x\(^2\) + 4x - xz\(^2\)
b. x\(^2\) - 2xy + y\(^2\) - z\(^2\) + 10z - 25
\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)
\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)
\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)
\(x^2-2xy+y^2-z^2+10z-25\)
\(=\left(x-y\right)^2-\left(z-5\right)^2\)
\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)
a. x3 - 4x2 + 4x - xz2
= x(x2 - 4x + 4 ) - z2
= x(x - 4)2 - z2
=x( x - 4 - z ) ( x - 4 + z )
b. x2 - 2xy +y2 - z2 + 10z - 25
= ( x - y )2 - ( z - 5 )2
= ( x - y - z + 5 )(x - y + z - 5 )
Phân tích đa thức thành nhân tử:
a) x^2y + 2xy^2 + xy
b) x^3 + x^2 – 4x – 4
c) x^2 – 2x – 15
d) x^2 – 4 + (x – 2)^2
e) x^2 – y^2 + 2x + 1
g) (x + 9)^2 – 36x^2
h) x^2 – 2xy + y^2 – z^2 + 2zt – t^2
i) x^3 – 3x^2 + 3x – 1 – y^3
\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)
c: =(x-5)(x+3)
e: =(x+1-y)(x+1+y)
Phân tích đa thức thành nhân tử:
a) x^3 - x^2 + 8x - 8
b) 8x^3 - 8x^2y + 2xy^2
c) (x^2 + y^2 - z^2)^2 - 4x^2y^2
d) (x^2 - y^2 - 5)^2 - 4(x^2y^2 + 4xy + 4)
e) x^3 - y^3 - 3x^2 + 3x - 1
a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)
b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)
c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - xy + x - y\)
b) \({x^2} + 2xy - 4x - 8y\)
c) \({x^3} - {x^2} - x + 1\)
a) \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+2xy-4x-8y\)
\(=x\left(x+2y\right)-4\left(x+2y\right)\)
\(\left(x-4\right)\left(x+2y\right)\)
c) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
Phân tích đa thức sau thành nhân tử:
a)2x-4+xy-2y
b)x^2+2xy-4+y^2
a:=2(x-2)+y(x-2)
=(x-2)(y+2)
b: \(=\left(x+y\right)^2-4\)
=(x+y+2)(x+y-2)
Phân tích đa thức thành nhân tử:
a, \(x^3+3x^2+3x+1-27z^3\)
b, \(x^2-2xy+y^2-xz+yz\)
c, \(x^4+4x^2-5\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(4{a^2} + 4a + 1\)
b) \( - 3{x^2} + 6xy - 3{y^2}\)
c) \({\left( {x + y} \right)^2} - 2\left( {x + y} \right)z + {z^2}\)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`