Các trường hợp bằng nhau của tam giác,tam giác vuông
Các trường hợp bằng nhau của tam giác vuông:
-Hai cạnh góc vuông
-Cạnh góc vuông-góc nhọn kề
-Cạnh huyền-góc nhọn
-Cạnh huyền-cạnh góc vuông
Hãy nêu các trường hợp bằng nhau cho mỗi cặp tam giác trong Hình 17. Từ các điều kiện bằng nhau của hai tam giác, người ta suy ra được các trường hợp bằng nhau sau đây của hai tam giác vuông.
a) Xét \(\Delta{ABC}\) và \(\Delta{DEF}\) có:
AB = DE (gt)
\(\widehat {BAC} = \widehat {EDF}\) (gt)
AC = DF (gt)
\(\Rightarrow \Delta{ABC}=\Delta{DEF}\) (c-g-c)
b) Ta có: \(\widehat B + \widehat C = \widehat Q + \widehat R = 90^0\)
Mà \(\widehat B = \widehat Q\) \( \Rightarrow \widehat C = \widehat R\)
Xét \(\Delta{ABC}\) và \(\Delta{PQR}\) có:
\(\widehat C = \widehat R\) (gt)
BC = QR (gt)
\(\widehat B = \widehat Q\) (gt)
\(\Rightarrow \Delta{ABC}=\Delta{PQR}\) (g-c-g)
c) Xét \(\Delta{ABC}\) và \(\Delta{HKG}\) có:
\(\widehat C = \widehat G\) (gt)
AC = HG (gt)
\(\widehat A = \widehat H\) (gt)
\(\Rightarrow \Delta{ABC}=\Delta{HKG}\) (g-c-g)
Nêu các trường hợp bằng nhau của tam giác, tam giác vuông.
Tam giác vuông:
Cạnh huyền-góc nhọn
Cạnh góc vuông-góc nhọn kề
Hai cạnh góc vuông
Cạnh huyền-cạnh góc vuông
1. hai tam giác bằng nhau là hai tam giác như thế nào?
2.có mấy trường hợp bằng nhau của hai tam giác? Nêu các trường hợp đó.
3.nêu các trường hợp bằng nhau của hai tam giác vuông.
4.phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh một tam giác là tam giác cân.
5.phát biểu định nghĩa và tính chất tam giác đều.Nêu các cách chưng minh một tam giác là tam giác đều.
6.phát biểu định lí Py-ta-go thuận và đảo.
1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.
2. -Có 3 trường hợp bằng nhau của 2 tam giác:
+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).
+Trường hợp 2: cạnh-góc-cạnh(c.g.c).
+Trường hợp 3: góc-cạnh-góc(g.c.g)
3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông
4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau
-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau
+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân
- Cách chứng minh 1 tam giác là tam giác cân:
+ Chứng minh tam giác có 2 cạnh bằng nhau
+ Chứng minh tam giác có 2 góc bằng nhau
+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)
5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau
- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ
+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều
- Cách chứng minh 1 tam giác là tam giác đều:
+Chứng minh tam giác có 3 cạnh bằng nhau
+Chứng minh tam giác có 3 góc bằng nhau
+Chứng minh tam giác có 2 góc có 60 độ
+Chứng minh tam giác cân có 1 góc có 60 độ
6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông
- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông
1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.
2. -Có 3 trường hợp bằng nhau của 2 tam giác:
+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).
+Trường hợp 2: cạnh-góc-cạnh(c.g.c).
+Trường hợp 3: góc-cạnh-góc(g.c.g)
3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông
4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau
-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau
+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân
- Cách chứng minh 1 tam giác là tam giác cân:
+ Chứng minh tam giác có 2 cạnh bằng nhau
+ Chứng minh tam giác có 2 góc bằng nhau
+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)
5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau
- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ
+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều
- Cách chứng minh 1 tam giác là tam giác đều:
+Chứng minh tam giác có 3 cạnh bằng nhau
+Chứng minh tam giác có 3 góc bằng nhau
+Chứng minh tam giác có 2 góc có 60 độ
+Chứng minh tam giác cân có 1 góc có 60 độ
6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông
- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông
Hãy so sánh sự giống và khác của ba trường hợp bằng nhau của tam giác thường với các trường hợp bằng nhau của tam giác vuông?
Giúp mình với! mình cần gấp nhé
hãy nêu tất cả các trường hợp bằng nhau của tam giác kể cả tam giác vuông.
Có 4 Trường hợp bằng nhau của tam giác :
Trường hợp bằng nhau thứ nhất của tam giác là : Cạnh cạnh cạnh
Trường hợp bằng nhau thứ hai của tam giác là : Cạnh Góc Cạnh
Trường hợp bằng nhau thứ ba của tam giác là : Góc Cạnh Góc
Trường hợp bằng nhau thứ tư của tam giác là : Cạnh Huyền Góc Nhọn
Nếu đúng thì cho mình tích nha bạn !
Có 3 trường hợp bằng nhau của tam giác, từ 3 điều trên suy ra thêm 4 trường hợp bằng nhau của tam giác vuông:
Cạnh Cạnh Cạnh => Cạnh Huyền Cạnh Góc Vuông
Cạnh Góc Cạnh => Hai Cạnh Góc Vuông
Góc Cạnh Góc => 1/Cạnh Huyền Góc Nhọn
2/Cạnh góc vuông và góc nhọn kề nó
Cho tam giác ABC, đường cao AH. Trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tam giác ACD sao cho AD = BC, CD = AB. Chứng minh rằng AB song song với CD và AH vuông góc với AD ( mình mới học hai tam giác bằng nhau theo trường hợp cạnh - cạnh - cạnh thôi, các bạn giải đừng cho tam giác cân, tam giác vuông hay các trường hợp bằng nhau khác của tam giác vào bài giải, thanks)
1 . Tìm các dấu hiệu để nhận bt 2 tam giác đồng dạng
2. So sánh các trường hợp đồng dạng của tam giác vs trường hợp bằng nhau của tam giác ( Nếu lên những điểm giống và khác nhau )
3. Nêu các dấu hiệu nhận bt tam giác vuông đồng dạng
- Nêu các trường hợp bằng nhau của hai tam giác.
- Nêu các trường hợp bằng nhau của hai tam giác vuông.
- Thế nào là tam giác cân? Nêu các tính chất của tam giác cân? Nêu các cách để chứng minh tam giác cân
- Thế nào là tam giác vuông cân? Nêu các tính chất của tam giác vuông cân? Số đo mỗi góc nhọn trong tam giác vuông cân là bao nhiêu?
Thế nào là tam giác đều? Nêu các tính chất