\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Giải ptrình
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Giải phương trình
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\\ \Leftrightarrow2x-4-x-1-3x+11=0\\ \Leftrightarrow-2x+6=0\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\left(tm\right)\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2x-4-x-1=3x-11\left(khử\cdot mẫu\right)\)
\(\Leftrightarrow2x-x-3x=-11+4+1\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
giải phương trình
\(\dfrac{2}{x+1}\)- \(\dfrac{1}{x-2}\)= \(\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ ĐKXĐ:x\ne-1;x\ne2\\ \dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{1\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Rightarrow2x-4-x-1=3x-11\\ \Leftrightarrow2x-x-3x=-11+4+1\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
=>2x-4-x-1=3x-11
=>3x-11=x-5
=>2x=6
=>x=3
giải p.trình sau:
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(đkxđ:x\ne-1;x\ne2\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{1\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow2x-4-x-1=3x-11\\ \Leftrightarrow2x-4-x-1-3x+11=0\\ \Leftrightarrow-2x+6=0\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\)
giải các phương trình sau
\(\dfrac{2}{x+1}\)-\(\dfrac{1}{x-2}\)=\(\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(x\ne-1,x\ne2\\ \Leftrightarrow2x-4-x-1=3x-11\\ 6=2x\\ x=6:2=3_{\left(tmđk\right)}\)
1) giải các phương trình:
a) 11-2x=x-1
b) \(\dfrac{3x+2}{2}\)-\(\dfrac{3x+1}{6}\)=2x+\(\dfrac{5}{3}\)
c) \(\dfrac{x}{2x-6}\)+\(\dfrac{x}{2x+2}\)=\(\dfrac{-2x}{\left(3-x\right).\left(x+1\right)}\)
GIẢI CHI TIẾT AH
a: =>-3x=-12
=>x=4
b: =>3(3x+2)-3x-1=12x+10
=>9x+6-3x-1=12x+10
=>12x+10=6x+5
=>6x=-5
=>x=-5/6
c: =>x(x+1)+x(x-3)=4x
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=3(loại) hoặc x=0(nhận)
Bài 1: Giải các phương trình sau:
a)\(\dfrac{x-3}{5}+\dfrac{1+2x}{3}=6\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
a: =>3x-9+5+10x=90
=>13x-4=90
=>13x=94
hay x=94/13
b: \(\Leftrightarrow2x-4-x-1=3x-11\)
=>3x-11=x-5
=>2x=6
hay x=3(nhận)
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
1a.
ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)
\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)
b.
ĐKXĐ: \(x\ne\left\{-1;2\right\}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)
\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)
1c.
ĐKXĐ: \(x\ne\left\{2;5\right\}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)
\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)
2a.
\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)
\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
2b.
\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)
\(\dfrac{2}{x+1}\)-\(\dfrac{1}{x-2}\)=\(\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
ĐKXĐ: \(x\ne-1;x\ne2\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x-4-x-1}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Rightarrow x-5=3x-11\\ \Leftrightarrow2x=6\\ \Leftrightarrow x=3\left(TM\right)\)
Vậy tập nghiệm của Pt là S={3}
Rút gọn :
a)\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+....+\dfrac{1}{\left(x+10\right)\left(x+11\right)}B=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
a) ta có : \(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+10\right)\left(x+11\right)}\)
\(\Leftrightarrow A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+10}-\dfrac{1}{x+11}\)
\(\Leftrightarrow A=\dfrac{1}{x}-\dfrac{1}{x+11}=\dfrac{11}{x\left(x+11\right)}\)
b) ta có : \(B=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
\(\Leftrightarrow B=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)
\(\Leftrightarrow B=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)\(\Leftrightarrow B=\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{5}{x\left(x+5\right)}\)