Điểm A thuộc nửa đường tròn ( O;6cm) đường kính BC sao cho diện tích tam giác ABC lớn nhất. Khi đó ,số đo cung AC là A. 60° B.45°
cho nửa đường tròn tâm O có đường kínhAB bằng 2r kẻ hai tiếp tuyến Ax By của nửa O tại A và B Ax By và nửa đường tròn O thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB qua điểm M thuộc nửa đường tròn M khác A B kẻ tiếp tuyến với nửa đường tròn cắt tia Ax By theo thứ tự tại C D
a chứng minh AC + BD = CD và tam giác BCD vuông tại O
b Tính tích AC nhân BD theo AB
c các đường thẳng AB và BC cắt nhau tại N Chứng minh MN vuông góc với AB
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng
AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại 0;
b) Chứng minh AC.BD=R^2;
c) trên tia Cx lấy điểm N sao cho AC = CN , chứng minh CO // NM .
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(CM\cdot MD=OM^2=R^2\)
hay \(AC\cdot BD=R^2\)
a, CM : góc COD = 90o
b, CM : CD = AC + BD
c, gọi H là hình chiếu của M trên AB , I là giao điểm BC và MH . CM : IM = IH
Bạn có thể tham khảo bài tương tự ở đây:
BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24
CM góc COD = 90 độ
Theo tính chất 2 tiếp tuyến cắt nhau
Ta có : OC là phân giác góc AOM
=> góc COM = 1/2 góc AOM
OD là phân giác góc BOM
=> góc DOM = 1/2 góc BOM
=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ
CM CD = AC + BD
Theo tính chất của 2 tiếp tuyến cắt nhau ta có :
AC = CM
BD = MD
=> CD = MC + MD hay
CD = AC + BD
2) Cho điểm M thuộc nửa đường tròn (O; R) đường kính AB. Trên nửa mặt phẳng bờ AB chứa điểm M, kẻ các tia tiếp tuyến Ax, By với nửa đường tròn. Tiếp tuyến tại M của nửa đường tròn cắt tia Ax tại C.
a) Chứng minh rằng 4 điểm A, C, O, M cùng thuộc một đường tròn. Chỉ rõ tâm đường đó.
b) Tiếp tuyến tại M cắt tia By tại D. Chứng minh rằng AC + BD = CD và ACOD vuông tại O.
c) Gọi E là giao điểm của AD và BC, K là giao điểm của ME và AB. Chứng minh rằng E là trung điểm MK.
a: Xét tứ giác CAOM có góc CAO+góc CMO=180 độ
nên CAOM là tứ giác nội tiếp
Tâm là trung điểm của OC
b: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
AC+BD=CM+MD=CD
Bài 15. Cho điểm N thuộc nửa (O; R) đường kính AB. Trên nửa mặt phẳng bờ AB chưa điểm N, kẻ các tia tiếp tuyến Ax, By với nửa đường tròn. Tiếp tuyến tại N của nửa đường tròn cắt tia Ax tại C. a) CMR: A, C, O, N cùng thuộc 1 đường tròn. Chỉ rõ tâm b) Tiếp tuyến tại N cắt tia By tại D Em cần gấp và cho em xin hình
a: góc CAO+góc CNO=90+90=180 độ
=>CAON nội tiếp đường tròn đường kính CO
Tâm là trung điểm của OC
Bài 4: Cho nửa đường tròn (O;R) đường kính BC. Trên nửa mặt phẳng bờ BC chứa nửa đường tròn
vẽ tiếp tuyến Bx của(O), A là điểm bất kì thuộc nửa đường tròn sao cho AB Tiếp tuyến tại A của (O) cắt tia Bx tại D.
a) Chứng minh bốn điểm A,D,B,O cùng thuộc một đường tròn;
AB tại điểm
K.
b) Tia CA cắt Bx tại E. Chứng minh rằng OD
song song CE
và CA.CE=4R;
a: Xét tứ giác ADBO có
\(\widehat{DBO}+\widehat{DAO}=90^0+90^0=180^0\)
=>ADBO là tứ giác nội tiếp
=>A,D,B,O cùng thuộc một đường tròn
b: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC tại A
=>BA\(\perp\)CE tại A
Xét (O) có
DA,DB là các tiếp tuyến
DO đó: DA=DB
=>D nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra OD là đường trung trực của AB
=>OD\(\perp\)AB
Ta có: OD\(\perp\)AB
CE\(\perp\)AB
Do đó: OD//CE
Xét ΔEBC vuông tại B có BA là đường cao
nên \(CA\cdot CE=CB^2\)
=>\(CA\cdot CE=\left(2R\right)^2=4R^2\)
Cho nửa đường tròn tâm O có đường kính AB=2R. Kẻ hai tiếp tuyến Ax,By của nửa đường tròn (O) tại A và B (Ax,By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB).Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D. 1.chứng minh tam giác COD vuông tại O; 2.chứng minh AC.BD=R²; 3.kẻ MH vuông AB (H thuộc AB).chứng minh rằng BC đi qua trung điểm của đoạn MH-
1: Xét (O) có
CM,CA là tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
2: AC*BD=MC*MD=OM^2=R^2
:. Cho nửa đường tròn (O), đường kính AB = 2R. Gọi Ax, By là các tia vuông góc với AB (Các tia Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm I thuộc nửa đường tròn (I khác A và B) kẻ tiếp tuyến với nửa đường tròn (O), nó cắt các tia Ax, By lần lượt ở M và N.
a) Chứng minh:góc MON=90 độ
b) Chứng minh : MN = AM + BN.
c) Chứng minh AB là tiếp tuyến của đường tròn đường kính MN.
d) Xác định vị trí của điểm I trên nửa đường tròn (O) để diện tích tứ giác AMNB đạt giá trị nhỏ nhất.
a: Xét (O) có
MI,MA là tiếp tuyến
nên MI=MA và OM là phân giác của góc AOI(1)
Xét (O) có
NI,NB là tiếp tuyến
nên NI=NB và ON là phân giác của góc IOB(2)
Từ (1), (2) suy ra góc MON=1/2*180=90 độ
b: MN=MI+IN
=>MN=MA+NB
c: Gọi H là trung điểm của MN
Xét hình thang AMNB có
O,H lần lượt là trung điểm của AB,MN
nên HO là đường trung bình
=>HO//AM//BN
=>HO vuông góc AB
=>AB là tiếp tuyến của(H)
Bài 4: Cho nửa đường tròn (O;R) đường kính BC. Trên nửa mặt phẳng bờ BC chứa nửa đường tròn
vẽ tiếp tuyến Bx của(O), A là điểm bất kì thuộc nửa đường tròn sao cho AB Tiếp tuyến tại 4 của (O) cắt tia Bx tại D.
a) Chứng minh bốn điểm A,D,B,O cùng thuộc một đường tròn;
AB tại điểm
K.
b) Tia CA cắt Bx tại E. Chứng minh rằng OD
song song CE
và CA.CE=4R;
a.
Do AD là tiếp tuyến tại A \(\Rightarrow\widehat{OAD}=90^0\)
\(\Rightarrow\) 3 điểm O, A, D thuộc đường tròn đường kính OD (1)
BD là tiếp tuyến tại B \(\Rightarrow\widehat{OBD}=90^0\)
\(\Rightarrow\) 3 điểm O, B, D thuộc đường tròn đường kính OD (2)
(1);(2) \(\Rightarrow\) 4 điểm A, D, B, O cùng thuộc đường tròn đường kính OD
b.
Do D là giao điểm 2 tiếp tuyến tại A và B, theo t/c hai tiếp tuyến cắt nhau
\(\Rightarrow DA=DB\)
Mà \(OA=OB=R\)
\(\Rightarrow OD\) là trung trực của AB \(\Rightarrow OD\perp AB\) (3)
BC là đường kính và A thuộc đường tròn nên \(\widehat{BAC}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{BAC}=90^0\Rightarrow BA\perp CA\) (4)
(3);(4) \(\Rightarrow OD||CA\) (cùng vuông góc AB) hay \(OD||CE\)
Áp dụng hệ thức lượng trong tam giác vuông BCE với đường cao BA ứng với cạnh huyền:
\(BC^2=CA.CE\Rightarrow\left(2R\right)^2=CA.CE\)
\(\Rightarrow CA.CE=4R^2\)
Em kiểm tra lại đề bài, đoạn này là sao nhỉ: "Tiếp tuyến tại 4 của (O) "