Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọcc Jem
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2021 lúc 20:39

Ta có: \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x+y\right)=2\\-\left(2x+3y\right)=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\2x+3y=-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\2\cdot\left(-2-y\right)+3y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\-4-2y+3y+9=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2-y\\y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2-\left(-5\right)\\y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2+5=3\\y=-5\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

Nguyễn Thành
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 18:41

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Ngọcc Jem
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2021 lúc 13:14

Ta có: \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=1\\-2\left(2x-3y\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=1\\2x-3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1=1\left(vôlý\right)\\2x-3y=1\end{matrix}\right.\)

Vậy: Hệ phương trình vô nghiệm

đặng thị thu thủy
Xem chi tiết
Nguyễn Thái Thịnh
6 tháng 2 2022 lúc 17:02

Câu 1:

Thay \(x=\sqrt{2};y=2\sqrt{2}\) vào đồ thị hàm số \(y=ax^2\) ta có:

\(\left(\sqrt{2}\right)^2.a=2\sqrt{2}\Leftrightarrow2a=2\sqrt{2}\Leftrightarrow a=\sqrt{2}\)

Vậy \(a=\sqrt{2}\) thì đồ thị hàm số \(y=ax^2\) đi qua điểm \(\left(\sqrt{2};2\sqrt{2}\right)\)

b) \(\left\{{}\begin{matrix}2x+3y=-1\\x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(3+2y\right)+3y=-1\\x=3+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=-7\\x=3+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3+2.\left(-1\right)=1\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \(\left(1;-1\right)\)

Phạm hồng vân
Xem chi tiết
Akai Haruma
8 tháng 5 2023 lúc 23:50

Lời giải:
$x+2y=4$

$3x+3y=1$

$\Rightarrow 3(x+2y)-(3x+3y)=4.3-1$

$\Leftrightarrow 3y=11$

$\Leftrightarrow y=\frac{11}{3}$

$x=4-2y=4-2.\frac{11}{3}=\frac{-10}{3}$

Vậy......

Tín trần
Xem chi tiết
Nguyễn Phương Linh
7 tháng 1 2018 lúc 10:51

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

Despacito
7 tháng 1 2018 lúc 10:54

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

a, \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

Ngô Thị Phương Thảo
Xem chi tiết
Ngô Thanh Sang
1 tháng 9 2017 lúc 9:51

\(A=x^4-2x^3+2x^2-2x+1\)
\(A=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\)
\(A=\left(x^2-x\right)^2+\left(x-1\right)^2\)
\(A=x^2\left(x-1\right)^2+\left(x-1\right)^2\)
\(A=\left(x-1\right)^2\left(x^2+1\right)\)
\(A=0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
\(x^2+1=0\) vô nghiệm
KL: \(x=1\)

Còn 1 bài nữa thôi đúng k Ngô Thị Phương Thảo

Khánh An Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 19:07

\(\left\{{}\begin{matrix}\sqrt{2}x+2\sqrt{3}y=5\\3\sqrt{2}x-\sqrt{3}y=4,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\sqrt{2}=5-2\sqrt{3}y\\3\sqrt{2}\cdot x-y\cdot\sqrt{3}=4,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\left(5-2\sqrt{3}y\right)-y\sqrt{3}=4,5\\x\sqrt{2}=5-2\sqrt{3}\cdot y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}15-7\sqrt{3}y=4,5\\x\sqrt{2}=5-2\sqrt{3}\cdot y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{10.5}{7\sqrt{3}}=\dfrac{\sqrt{3}}{2}\\x\sqrt{2}=5-2\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Đạt Trần
Xem chi tiết
Hồng Phúc
17 tháng 4 2021 lúc 12:13

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

Nguyễn Việt Lâm
17 tháng 4 2021 lúc 12:41

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)