Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Hưng Mai Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 3:05

a:

ĐKXĐ: x+1>0 và x>0

=>x>0

=>\(log_2\left(x^2+x\right)=1\)

=>x^2+x=2

=>x^2+x-2=0

=>(x+2)(x-1)=0

=>x=1(nhận) hoặc x=-2(loại)

c: ĐKXĐ: x-1>0 và x-2>0

=>x>2

\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)

=>\(\Leftrightarrow x^2-3x+2=8\)

=>x^2-3x-6=0

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

Nguyễn Văn Hưng
Xem chi tiết
Nguyễn Bảo Trân
30 tháng 3 2016 lúc 10:13

Đặt \(t=\log_2x\) ta có bất phương trình :

\(2t^3+5t^2+t-2\ge0\)

hay 

\(\left(t+2\right)\left(2t^2+t-1\right)\ge0\)

Bất phương trình này có nghiệm -2\(\le t\)\(\le-1\) hoặc \(t\ge\frac{1}{2}\)

Suy ra nghiệm của bất phương trình là :

\(\frac{1}{4}\le x\)\(\le\frac{1}{2}\) hoặc \(x\ge\sqrt{2}\)

 

títtt
Xem chi tiết

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

Nguyễn Việt Lâm
20 tháng 1 lúc 21:16

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

Akai Haruma
20 tháng 1 lúc 21:16

Lời giải:
a. ĐK: $x>2$
$\log(x-2)<3$

$\Leftrightarrow x-2< 10^3$

$\Leftrightarrow x< 1002$

Vậy $2< x< 1002$
b.  ĐK: $x> \frac{1}{2}$

$\log_2(2x-1)>3$

$\Leftrightarrow 2x-1> 2^3$

$\Leftrightarrow 2x> 9$

$\Leftrightarrow x> \frac{9}{2}$

Vậy $x> \frac{9}{2}$

c. ĐK: $x< -1$

$\log_3(-x-1)\leq 2$

$\Leftrightarrow -x-1\leq 3^2=9$

$\Leftrightarrow x+1\geq -9$

$\Leftrightarrow x\geq -10$

Vậy $-10\leq x< -1$

d. ĐK: $x> \frac{3}{2}$

$\log_2(2x-3)\geq 2$

$\Leftrightarrow 2x-3\geq 2^2=4$

$\Leftrightarrow x\geq \frac{7}{2}$

Vậy $x\geq \frac{7}{2}$

e. ĐK: $x> \frac{7}{2}$

$\log_3(2x-7)>2$
$\Leftrightarrow 2x-7> 3^2=9$
$\Leftrightarrow x> 8$

Vậy $x>8$

Lê Song Phương
Xem chi tiết
Hòa Phạm
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
bill gates trần
Xem chi tiết
Phong trương
6 tháng 2 2019 lúc 21:17

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

Nguyễn Lê Phước Thịnh
14 tháng 2 2023 lúc 8:15

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

CAO ĐỨC TÂM
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Giáo viên Toán
26 tháng 4 2017 lúc 11:18

a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)

Hay là: \(x>1\)

Khi đó biến đổi pương trình như sau:

\(\ln\dfrac{4x+2}{x-1}=\ln x\)

\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)

\(\Leftrightarrow4x+2=x\left(x-1\right)\)

\(\Leftrightarrow x^2-5x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)

Giáo viên Toán
26 tháng 4 2017 lúc 11:26

b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)

Hay là: \(x>0\)

Biến đổi phương trình như sau:

\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)

\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)

Vậy nghiệm là x = 9.

Giáo viên Toán
26 tháng 4 2017 lúc 11:30

c) Điều kiện: x > 0.

Khi đó biến đổi phương trình như sau:

\(2^{\log_3x^2}.5^{\log_3x}=400\)

\(\Leftrightarrow2^{2\log_3x}.5^{\log_3x}=400\)

\(\Leftrightarrow\left(2^2.5\right)^{\log_3x}=400\)

\(\Leftrightarrow20^{\log_3x}=20^2\)

\(\Leftrightarrow\log_3x=2\)

\(\Leftrightarrow x=3^2=9\) (thỏa mãn)