Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi le thanh
Xem chi tiết
Nguyễn Anh Tú
1 tháng 5 2015 lúc 20:35

cho da thuc = 0 ma tinh                

Trần Thị Loan
1 tháng 5 2015 lúc 21:34

f(x) = 0 => x3 - 2x2 - x + 2 = 0

=> x2. (x - 2) - (x - 2) = 0

=> (x2 - 1).(x - 2) = 0 => x2 - 1 = 0 hoặc x - 2 = 0

+) x2 - 1 = 0 => x = 1 hoặc x = -1

+) x - 2 = 0 => x = 2

Vậy đa thức có 3 nghiệm là: -1;1;2

nguyen thi le thanh
Xem chi tiết
Đỗ Hoàng Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 22:59

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7

Nguyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
13 tháng 4 2022 lúc 13:01

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

Akai Haruma
13 tháng 4 2022 lúc 13:03

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

Akai Haruma
13 tháng 4 2022 lúc 13:05

Bài 2:

$f(x)=(x-1)(x+2)=0$

$\Leftrightarrow x-1=0$ hoặc $x+2=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$

Tức là:

$g(1)=g(-2)=0$

$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$

$\Rightarrow a=0; b=-3$

Đặng Anh Quế
Xem chi tiết
Không Tên
6 tháng 8 2018 lúc 20:46

\(P\left(x\right)=2x^3+4x^2-5x-1=0\)

<=>  \(2x^3-2x^2+6x^2-6x+x-1=0\)

<=>  \(2x^2\left(x-1\right)+6x\left(x-1\right)+x-1=0\)

<=> \(\left(x-1\right)\left(2x^2+6x+1\right)=0\)

<=>  \(x-1=0\)  (do 2x2 + 6x + 1 khác 0)

<=>  \(x=1\)

Vậy....

Phạm Tuấn Đạt
6 tháng 8 2018 lúc 20:53

\(P\left(x\right)=2x^3+4x^2-5x-1\)

\(P\left(x\right)=2x^3-2x^2+6x^2-6x+x-1\)

\(P\left(x\right)=2x^2\left(x-1\right)-6x\left(x-1\right)+\left(x-1\right)\)

\(P\left(x\right)=\left(x-1\right)\left(2x^2-6x+1\right)\)

Để P(x) có nghiệm \(\Rightarrow x-1=0\Leftrightarrow x=1\)

Vậy x = 1 là 1 nghiệm của P(x)

NgoHoang
Xem chi tiết
naruto
23 tháng 4 2017 lúc 20:37

kết quả = -1

Chu Diệu Linh
Xem chi tiết
Lê Hồ Trọng Tín
9 tháng 5 2019 lúc 10:49

Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1

=>2 và 1 cũng là nghiệm của B(x)

<=>B(1)=0 và B(2)=0

<=>2+a+b+4=0 và 16+4a+2b+4=0

<=>a+b=-6 và 2(2a+b)=-20

<=>a+b=-6 và 2a+b=-10

Suy ra:a=-4 và b=-2

Nguyễn Thị  Thùy Dương
Xem chi tiết
Lê Ng Hải Anh
5 tháng 5 2019 lúc 21:53

Để đa thức có nghiệm thì \(x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

=.= hk tốt!!

Nguyễn Thị  Thùy Dương
5 tháng 5 2019 lúc 21:57

giúp mình với

Nguyễn Duy Thiên
5 tháng 5 2019 lúc 22:15

Ta có:\(x^2-2x=0\)(1)

\(\Leftrightarrow\)\(x\cdot\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy PT (1) có tập nghiệm là S = { 0 ; 2 }.

hà nguyễn
Xem chi tiết
ILoveMath
4 tháng 3 2022 lúc 7:10

\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)

\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)

b,\(M\left(x\right)=-3x^3-x^2+2=0\)

Nghiệm xấu lắm bạn