x+y=2xy
Kết quả của phép nhân \((x + y - 1)(x + y + 1)\) là:
A. \({x^2} - 2xy + {y^2} + 1\)
B. \({x^2} + 2xy + {y^2} - 1\)
C. \({x^2} - 2xy + {y^2} - 1\)
D. \({x^2} + 2xy + {y^2} + 1\)
\(\left(x+y-1\right)\left(x+y+1\right)=x^2+xy-x+xy+y^2-y+x+y-1\\ =x^2+\left(xy+xy\right)+\left(-x+x\right)+y^2+\left(-y+y\right)-1\\ =x^2+2xy+y^2-1\\ =>B\)
Thực hiện phép tính:
a/(x^2+y^2-2xy)+(x^2+y^2 +2xy)
b/(x^2+y^2-2xy) - (x^2+y^2+2xy)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
(x+y-2xy).(x+y+2xy)
\(\left(x+y-2xy\right)\left(x+y+2xy\right)\)
\(=\left(x+y\right)^2-4x^2y^2\)
\(=x^2+2xy+y^2-4x^2y^2\)
\(\left(x+y-2xy\right)\left(x+y+2y\right)\)
\(=\left[\left(x+y\right)-2xy\right]\left[\left(x+y\right)+2xy\right]\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
Tính 1 cách hợp lí x/x^2+2xy+y^2 + 2y/x+y + y/x^2+2xy+y^2=?
\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
Tìm x, y thuộc Z để:
a) xy + x - y = 2
b) x - 2xy + y = 0
c) x. (x - 2) - (2 - x)y - 2. (x - 2) = 3
d) (2x - y). (4x2 + 2xy + y2) + (2x + y). (4x2 - 2xy + y2) - 16x. (x2 - y) = 32
e) x2 - 2xy + 2y2 - 2x + 6y +5 = 0
g) x2 + 2xy + 7x + 7y + 2y2 = 0
Rút gọn phân thức a) 2x² - 2xy / x²+x-xy-y b) x²-y²+z²+2xy/ x²-y²+z²+2xz
a) \(\dfrac{2x^2-2xy}{x^2+x-xy-y}\) \(\left(x\ne y;x\ne-1\right)\)
\(=\dfrac{2x\left(x-y\right)}{x\left(x+1\right)-y\left(x+1\right)}\)
\(=\dfrac{2x\left(x-y\right)}{\left(x-y\right)\left(x+1\right)}\)
\(=\dfrac{2x}{x+1}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
Chọn câu sai: x^2 + y^2 bằng:
A.(x+y)^2 B.(x - y)^2 +2xy C.(x + y)^2 - 2xy D.y^2 + x^2
Uả bạn đang kiểm tra hay sao mà gấp thế?
rút gọn biết thức Q=1+\(\left(\frac{2xy\sqrt{x}+2xy\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right)\): \(\left(\frac{2xy}{x+\sqrt{xy}}+\frac{2xy}{y+\sqrt{xy}}\right)\)
Chọn đáp án đúng
\({ (x^{3}+3x^{2}y+3xy^{2}+y^{3}-z^{3}):(x+y-z) }\)
\(A. { x^{2}+y^{2}+z^{2}+2xy+xz+yz }\)
\(B. { x^{2}+y^{2}+z^{2}+2xy-xz-yz } \)
\(D. { x^{2}+y^{2}-z^{2}+2xy-xz-yz } \)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Tìm các cặp số nguyên (x;y), biết:
a) x-2xy=-1-2y
b) -x+y=2xy-5
c) 3x-2xy=-1-y