\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
cho (x+2y)(x^2-2xy+y^2) = 0 và (x-2y)(x^2+2xy+y^2) = 16 . Tính A=(xy)^2016
tính
(x+2y)(x^2 y^2-1/2xy+y^2)
Rút gọn và tính giá trị. 2xy(x^2y-1/2xy)-2x^2y(xy-1/2y)+1 với x = -2 ; y = 1/2
cho x^2+2xy+2y^2=1 tính x^4+y^4+(x+y)^4
a) Cho x - y = 7 .Tính giá trị biểu thức A = x( x + 2 ) + y ( y - 2 ) - 2xy
B = x3 - 3xy( x - y ) - y3 - x2 + 2xy - y2
b) Cho x + 2y = 5.Tính giá trị biểu thức:
C = x2 + 4y2 - 2x + 10 + 4xy - 4y
Mọi người ghi rõ cách làm giùm mình với,cảm ơn đã giúp mình nha!
cho (x+2y)(x^2-2xy+y^2)=0 và (x-2y)(x^2+2xy+4y^2)=16 tìm x và y
a xy -2x -y^2 +2y
b x^2 - 2xy +y^2 -x +y
c x^2 -1 -2xy +2y
d (x+3)^2 -(2x -5)(x+3)
Tính:
\(a,\dfrac{-5}{4+2y}+\dfrac{y-2}{2y+y^2}\)
\(b,\dfrac{x-1}{x^2-2xy}+\dfrac{3}{2xy-x^2}\)
Tìm x,y biết:
a,2x^2+y^2+2xy+10x+25=0
b,x^2+3y^2+2xy-2y+1=0
c,x^2+2y^2+2xy-2x+2=0