3x+7/x-1
tìm số nguyên x
Tìm số nguyên x sao cho:
-8<x<4
-2_< x _<10
-7<x_<1
-5_<x<1
Tìm tổng của tất cả các số nguyên x thỏa mãn:
-5<x<8
-12<x<12
Giúp mình với ,mình đang cần gấp ngày mai
Tìm GTNN
a) A= 4x^2+11x-2
b) B= 3x^2-2x-1
Tìm GTLN
a) A = -x^2+3x-1
b) B = -x^2-4x+7
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
Bài 1:
a: Ta có: \(A=4x^2+11x-2\)
\(=4\left(x^2+\dfrac{11}{4}x-\dfrac{1}{2}\right)\)
\(=4\left(x^2+2\cdot x\cdot\dfrac{11}{8}+\dfrac{121}{64}-\dfrac{153}{64}\right)\)
\(=4\left(x+\dfrac{11}{8}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{11}{8}\)
b: Ta có: \(B=3x^2-2x-1\)
\(=3\left(x^2-\dfrac{2}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
tìm gtln của -3x^2+5x+6; -4x^2+4x-1
tìm gtnn của x^2+4x+7;x^2-x+1
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
x^3+3x^2+3x=-1
Tìm x
\(\Rightarrow x^3+3x^2+3x+1=0\\ \Rightarrow\left(x+1\right)^3=0\Rightarrow x+1=0\Rightarrow x=-1\)
1tìm các số a;b;c nguyên dương thõa mãn: a^2+3a^2+5=5^bvà a+3=5^c
2cho 3x=4y=0 tìm giá trị của biểu thức M= x^2=y^2
bài 1
tìm các số nguyên x,y biết : xy + 3x + 3y = -16
bài 2
cho S = 3+32+33+...+32021. Chứng tỏ rằng 2S+3 viết được dưới dạng bình phương của một số tự nhiên
bài 3
cho A = 4+42+43+...+423+424. Chứng minh : A⋮20,A⋮21,A⋮420.
Bài 2:
3S=3^2+3^3+...+3^2022
=>2S=3^2022-3
=>2S+3=3^2022 là số chính phương(ĐPCM)
TK :
bài 1
út gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Rút gọn thừa số chung
Đơn giản biểu thức
Rút gọn thừa số chung
Đơn giản biểu thức
mik chỉ bt làm câu 1 thôiCho 2 số nguyên dương x + y = 1
tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{y}{1+x}+\dfrac{x}{1+y}\)
Chắc đề đúng là số dương, vì ko tồn tại x;y nguyên dương thỏa mãn x+y=1
\(A=\dfrac{y^2}{xy+y}+\dfrac{x^2}{xy+x}\ge\dfrac{\left(x+y\right)^2}{x+y+2xy}\ge\dfrac{\left(x+y\right)^2}{x+y+\dfrac{1}{2}\left(x+y\right)^2}=\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
tìm các số nguyên x sao cho x+10 chia hết cho x-1
tìm các số tự nhiên n sao cho 2n+15 chia hết cho n+3
a: =>x-1+11 chia hết cho x-1
=>\(x-1\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{2;0;12;-10\right\}\)
b: =>2n+6+9 chia hết cho n+3
=>\(n+3\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(n\in\left\{-2;-4;0;-6;6;-12\right\}\)
\(\left(x-2\right)\left(x^2+2x+4\right)+3x-4=\left(x+2\right)\left(x^2-2x+4\right)-x+1\)
\(\Rightarrow\left(x^3-8\right)+3x-4=\left(x^3+8\right)-x+1\)
\(\Rightarrow x^3-8+3x-4=x^3+8-x+1\)
\(\Rightarrow x^3-x^3+3x+x=8+8+4+1\)
\(\Rightarrow4x=21\)
\(\Rightarrow x=\dfrac{21}{5}\)
Cho hàm số (d):y=(m-3)x-2m+1
Tìm m nguyên để (d) giao với trục hoành tại điểm có hoành độ nguyên
Tọa độ giao điểm của (d) với trục hoành Ox là:
\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x-2m+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-3\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m-1}{m-3}\\y=0\end{matrix}\right.\)
Để x nguyên thì \(2m-1⋮m-3\)
=>\(2m-6+5⋮m-3\)
=>\(5⋮m-3\)
=>\(m-3\in\left\{1;-1;5;-5\right\}\)
=>\(m\in\left\{4;2;8;-2\right\}\)