Bài 15: Cho abc=2, Tính \(\dfrac{a}{ab+a+2}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{2c}{ac+2c+2}\)
Cho abc=2. Rút gọn biểu thức: \(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)
M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)
M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)
Cho a,b,c>0
CMR:
\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{ab^2+b^2c}+\dfrac{ab}{ac^2+bc^2}\text{≥}\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
nhân cả vế với abc ta có điều cần chứng minh
\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)
VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)
=>(đpcm)
mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé
nhân cả vế với abc ta có điều cần chứng minh
\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)
VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)
=>(đpcm)
mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)
chỉ cần chứng minh được\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+x}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé.
Cho abc = 2 .Rút gọn biểu thức :
A=\(\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
Thay abc = 2 vào biểu thức A ta được:
\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc\cdot c}{ac+abc+abc}\\ A=\dfrac{1}{b+1+bc}+\dfrac{b}{bc+b+1}+\dfrac{bc}{1+bc+b}\\ A=\dfrac{1+b+bc}{1+b+bc}\\ A=1\)
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)
cho abc = 2 , tính giá trị biểu thức
\(A=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2a+2}\)
ta có : \(A=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(=\dfrac{a}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{abc^2}{abc^2+abc+ac}\)
\(=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\) \(=\dfrac{bc+b+1}{bc+b+1}=1\)
Cho a,b,c >0.Chứng minh:
\(P=\dfrac{a^2b}{ab^2+1}+\dfrac{b^2c}{bc^2+1}+\dfrac{c^2a}{ca^2+1}\ge\dfrac{3abc}{1+abc}\)
\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)
\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Với a, b, c > 0 có:
\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)
\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)
chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\)
Cho a,b,c>0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1980\)
Chứng minh rằng: \(\dfrac{\sqrt{b^2+2a^2}}{ab}+\dfrac{\sqrt{c^2+2b^2}}{bc}+\dfrac{\sqrt{a^2+2c^2}}{ac}\ge1980\sqrt{3}\)
\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)
Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)
Cộng vế với vế:
\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)
cho a,b,c > 0 sao cho ab+bc+ac+abc=2. Tìm giá trị lớn nhất của:
\(M=\dfrac{a+1}{a^2+2a+2}+\dfrac{b+1}{b^2+2b+2}+\dfrac{c+1}{c^2+2c+2}\)
dự đoán dấu đẳng thức xảy ra tại \(a=b=c=\sqrt{3}-1\) nên \(MinM=\dfrac{3\sqrt{3}}{4}\)ta đi chứng minh \(M\le\dfrac{3\sqrt{3}}{4}\)
Đặt \(a+1=x\); \(b+1=y\); \(c+1=z\)
\(\Rightarrow x+y+z=a+b+c+3=a+b+c+ab+bc+ac+abc+1\)
\(=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)\(=xyz\)
\(\Rightarrow x+y+z=xyz\) đặt \(x=tan\dfrac{A}{2};y=tan\dfrac{B}{2};z=tan\dfrac{C}{2}\)
\(\Rightarrow tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}=tan\dfrac{A}{2}.tan\dfrac{B}{2}.tan\dfrac{C}{2}\)(đúng , tự cm hoặc google)
do \(x=tan\dfrac{A}{2}\Rightarrow sinA=\dfrac{2x}{x^2+1}\Rightarrow\dfrac{sinA}{2}=\dfrac{x}{x^2+1}\)
\(\Rightarrow M=\Sigma\dfrac{sinA}{2}\)ta phai cm \(M=\Sigma\dfrac{sinA}{2}\le\dfrac{3\sqrt{3}}{4}\Leftrightarrow M\le\dfrac{3\sqrt{3}}{2}\)
\(\Leftrightarrow sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)theo BDT Cauchy-Swarch
\(\Rightarrow sinA+sinB+sinC\le\sqrt{3\left(sinA^2+sin^2B+sin^2C\right)}\)
mặt khác \(sin^2A+sin^2B+sin^2C\le\dfrac{9}{4}\)(trong sach toan 10 co BDT nay hoac google)
\(\Rightarrow sinA+sinB+sinC\le\sqrt{\dfrac{3.9}{4}}=\dfrac{3\sqrt{3}}{2}\)
\(\Rightarrow dpcm\)
cm bất đẳng thức vs a,b,c dương
\(\dfrac{a^8}{b^4}+\dfrac{b^8}{c^4}+\dfrac{c^8}{a^4}\ge ab^3+bc^3+ca^3\)
\(\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{2ca}{b}+4b^2c^2\ge8abc\)
\(\dfrac{a^4}{b^2c^2}+\dfrac{b^4}{a^2c^2}+\dfrac{c^4}{a^2b^2}\ge\dfrac{b}{\sqrt{ac}}+\dfrac{c}{\sqrt{ab}}+\dfrac{a}{bc}\)