Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trung nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 23:12

\(B=1-\dfrac{1}{2}+\dfrac{3}{2}=1+1=2\)

nguyễn duy khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 19:15

a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)

\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)

\(=cot^2x\)

\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

=>VT=VP

b:

\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)

\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)

\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)

Nguyễn Thị Kim Nguyên
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Hồng Phúc
27 tháng 9 2021 lúc 12:59

a, \(sin^2x-4sinx+3=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow sinx=1\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

Hồng Phúc
27 tháng 9 2021 lúc 13:01

b, \(2cos^2-cosx-1=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Hồng Phúc
27 tháng 9 2021 lúc 13:06

c, \(3sin^2x-2cosx+2=0\)

\(\Leftrightarrow3-3sin^2x+2cosx-5=0\)

\(\Leftrightarrow3cos^2x+2cosx-5=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(3cosx+5\right)=0\)

\(\Leftrightarrow cosx=1\)

\(\Leftrightarrow x=k2\pi\)

Bình Trần Thị
Xem chi tiết
Mai Thị Khánh Huyền
Xem chi tiết
Mai Thị Khánh Huyền
19 tháng 9 2017 lúc 19:23

hộ vs ae ơi

Quyên Quyên
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2020 lúc 21:48

a/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-2\left(1-sin^22x\right)=0\)

\(\Leftrightarrow1-\frac{1}{2}\left(cos6x+cos2x\right)-2cos^22x=0\)

\(\Leftrightarrow1-cos4x.cos2x-2cos^22x=0\)

\(\Leftrightarrow2cos^22x-1+cos4x.cos2x=0\)

\(\Leftrightarrow cos4x+cos4x.cos2x=0\)

\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 8 2020 lúc 21:51

b/

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}\right)+\sqrt{3}sin2x=1\)

\(\Leftrightarrow cos2x.cos\left(\frac{\pi}{3}\right)-sin2x.sin\left(\frac{\pi}{3}\right)+\frac{1}{2}+\sqrt{3}sin2x=1\)

\(\Leftrightarrow\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 8 2020 lúc 21:56

c/

\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)

\(\Leftrightarrow3+5cosx=1-cos^2x-cos^2x\)

\(\Leftrightarrow2cos^2x+5cosx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)