Giải phương trình:
\(\sqrt{9x-9}-1=\sqrt{x-1}\)
Chi tiết không thiếu 1 dòng nhé!
Giải phương trình:
a) \(\sqrt{x-2}+\dfrac{1}{2}\sqrt{4x-8}=\sqrt{9x-18}-2\)
b) \(\sqrt{\left(3x-1\right)^2}=5\)
LÀM CHI TIẾT GIÚP MK NHÉ
a)√x−2+12√4x−8=√9x−18−2
=>√x−2+12√4(x−2)=√9(x−2)−2
=>√x−2+12√22(x−2)=√32(x−2)−2
=>√x−2+12.2√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)-3√(x−2)=-2
=>√x−2(1+24-3)=-2
=>22√x−2=-2
=>√x−2=-2/22
=>√x−2=-1/11
=>x−2=1/121
=>x=1/121+2=243/121
b)√(3x−1)2=5
=>|3x−1|=5
=>3x−1=5 hoặc 3x−1=-5
=>3x=6 hoặc 3x=-4
=>x=2 hoặc x=-4/3
Giải các phương trình (giải chi tiết):
a) \(\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12\)
b) \(5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36\)
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
giải phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\) (mn giải chi tiết giúp mình với, mình cảm ơn ạ)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=-\sqrt{x^2+9x+m}\)
Tìm m để phương trình có nghiệm
Giải chi tiết hộ mình
đó là câu b, câu a là giải phương trình khi m=9
ĐK: \(0\le x\le9\)
Ta có:
\(VT=\sqrt{x}+\sqrt{9-x}>0\)
\(VP=-\sqrt{x^2+9x+m}\le0\)
\(\Rightarrow\) Phương trình vô nghiệm với mọi m
Vậy không tồn tại giá trị m thỏa mãn.
Giải phương trình:
\(\sqrt{9x-9}-1=\sqrt{x-1}\)
\(\Leftrightarrow2\sqrt{x-1}=1\)
=>x-1=1/4
hay x=5/4
bài 1:giải phương trình
a)\(\sqrt{9x^2+12x+4}-4\) = 0
b)\(3\sqrt{x+3}-\sqrt{x-5}\) = 0
c)\(x-7+\sqrt{x-1}\) = 0
giải cụ thể chi tiết giúp mk vớiiiiii ạ
a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
giải phương trình
\(\sqrt{9x+9}=20-\sqrt{x+1}\)
ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow3\sqrt{x+1}+\sqrt{x+1}=20\)
\(\Leftrightarrow4\sqrt{x+1}=20\Leftrightarrow\sqrt{x+1}=5\)
\(\Leftrightarrow x+1=25\Leftrightarrow x=24\left(tm\right)\)
\(\sqrt{9x+9}=20-\sqrt{x+1}\)
\(\Leftrightarrow x+1=25\)
hay x=24
\(6\sqrt{x}+1-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)\
giải phương trình ạ!!!
ai có thể giúp mình giải bài này với đc không (giải chi tiết hộ mình nhé,xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
VD1 :
a,\(\sqrt{2x-1}=\sqrt{2}-1\)
b,\(\sqrt{x+5}=3-\sqrt{2}\)
c,\(\sqrt{3}x^2-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
VD2 :
a, \(\sqrt{2x+5}=\sqrt{1-x}\)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\)
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)