Rút gọn:
\(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\) (x\(\ge\)2y)
rút gọn các biểu thức sau
a)x-2y-\(\sqrt{x^2-4xy+4y^2}\) d)\(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\)
B)\(x^2+\sqrt{x^4-8x^2+16}\) e)\(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
C)\(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
TH1: \(x-2y--\left(x-2y\right)\)
\(=x-2y+x-2y\)
\(=2x-4y\)
TH2: \(x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
b) \(x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+\left|x^2-4\right|\)
TH1:
\(x^2+-\left(x^2-4\right)\)
\(=x^2-x^2+4\)
\(=4\)
TH2:
\(x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)
\(=2x-1-\sqrt{x-5}\)
d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))
\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)
\(=\sqrt{x^2-2}\)
e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+1\)
TH1:
\(x^2-4+1\)
\(=x^2-3\)
TH2:
\(-\left(x^2-4\right)+1\)
\(=-x^2+4+1\)
\(=-x^2+5\)
a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)
=x-2y-|x-2y|
Khi x>=2y thì A=x-2y-x+2y=0
Khi x<2y thì A=x-2y+x-2y=2x-4y
b: \(B=x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
B=x^2+x^2-4=2x^2-4
TH2: -2<=x<=2
B=x^2+4-x^2=4
c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)
d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)
2. rút gọn
\(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(x-2y-\sqrt{x^2-4xy+4y^2}\left(1\right)=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)
TH1: \(x\ge2y\)
\(\left(1\right)=x-2y-x+2y=0\)
TH2: \(x< 2y\)
\(\left(1\right)=x-2y+x-2y=2x-4y\)
= x - 2y - \(\sqrt{\left(x-2y\right)^2}\)
= x - 2y - /x-2y/
= x - 2y - x + 2y
= 0
\(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\left|x-2y\right|\)
\(=\left[{}\begin{matrix}x-2y-x+2y=0\left(x\ge2y\right)\\x-2y+x-2y=2x-4y\left(x< 2y\right)\end{matrix}\right.\)
rút gọn : \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)
Lời giải:
Sửa đề: Rút gọn \(x+2y-\sqrt{x^2-4xy+4y^2}\) \((x\geq 2y)\)
----------------
Ta có:
\(x+2y-\sqrt{x^2-4xy+4y^2}=x+2y-\sqrt{x^2-2.x.2y+(2y)^2}\)
\(=x+2y-\sqrt{(x-2y)^2}\)
\(=x+2y-|x-2y|=x+2y-(x-2y)=4y\)
(do \(x\geq 2y\Rightarrow |x-2y|=x-2y\) )
rút gọn căn thức
\(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)\left(x\ge2y\right)}\)
đề rút gọn \(A=x+2y-\sqrt{x^2-4xy+4y^2}\) biết \(x\ge2y\)
\(A=x+2y-\sqrt{x^2-4xy+4y^2}\)
\(A=x+2y-\sqrt{\left(x-2y\right)^2}\)
\(A=x+2y-x+2y=4y\) (do \(x\ge2y\))
Rút gọn biểu thức
1. 4x + \(\sqrt{\left(x-12\right)^2}\) (x>= 2)
2. x+2y-\(\sqrt{\left(x^2-4xy+4y^2\right)^2}\) (x>= 2y)
giúp mình với!!~~
1,Sửa lại điều kiện,mình nghĩ là: \(x \geq 12\)(chắc bạn ghi nhầm)
Vì \(x \geq 12\) \(\Rightarrow\) \(x-12 \geq 0\) \(\Rightarrow\) \(\sqrt{\left(x-12\right)^2}=x-12\)
Ta có \(4x+\sqrt{\left(x-12\right)^2}\) = \(4x+x-12\) = 5x-12
2, Dư bình phương ở phần căn
Vì \(x \geq 2y\) \(\Rightarrow\) \(x-2y \geq 0\)
Ta có : \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)}=x+2y-\sqrt{\left(x-2y\right)^2}=x+2y-\left(x-2y\right)=x+2y-x+2y=4y\)
X+2y - √(x^2-4xy +4y^2)^2 (x>=2y)
Rút gọn biểu thức
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. Viết thế này khó đọc quá.
X+2y - √(x^2-4xy +4y^2)^2 (x>=2y) Rút gọn biểu thức
\(x+2y-\sqrt{x^2-4xy+4y^2}\)(sửa đề)
\(=x+2y-\sqrt{\left(x-2y\right)^2}\)
\(=x+2y-\left|x-2y\right|\)
\(=x+2y-\left(x-2y\right)\left(vì.x\ge2y\right)\)
\(=x+2y-x+2y\)
\(=4y\)
\(x+2y-\sqrt{x^2-4xy+4y^2}^2\)
\(=x+2y-\sqrt{\left(x-2y\right)^2}^2\)
\(=x+2y-\left(x-2y\right)^2\)
\(=x+2y-x^2+4xy-4y^2\)
\(\left\{{}\begin{matrix}\left(\sqrt{x}-2y\right)\left(1-\dfrac{1}{2y\sqrt{x}}\right)=3\\\left(x+4y^2\right)\left(1+\dfrac{1}{4xy^2}\right)=25\end{matrix}\right.\)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)