a,Chứng minh rằng \(a^2+b^2\ge2ab\)
b, Cho A=(a+1)(b+1) trong đó ab=1(a>0;b>0) áp dụng ý a hãy chứng minh \(A\ge4\)
Ai giải hộ em với sắp phải nộp rùi
Cho a,b,c>0. Chứng minh rằng:
\(^{a^2+b^2+c^2+2abc+1\ge2ab+2ac+2bc}\)
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
cho a,b >0 và a+b ≤ 1. chứng minh rằng ab+1/a^2+1/b^2 ≥ 33/4
\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{ab}\ge4\)
Do đó:
\(ab+\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge ab+\dfrac{2}{ab}=\left(ab+\dfrac{1}{16ab}\right)+\dfrac{31}{16}.\dfrac{1}{ab}\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{31}{16}.4=\dfrac{33}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Chứng minh rằng: \(a^2+b^2\ge2.a.b.\)
Áp dụng cho \(A=\left(a+1\right).\left(b+1\right)\)trong đó \(a.b=1\)(trong đó a > 0, b > 0). Chứng minh rằng: \(A\ge4\)
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2-2ab+b^2+2ab >= 0 + 2ab
<=> a^2+b^2 >= 2ab
Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>= \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)
= \(2\sqrt{4.\sqrt{ab}}\)= \(2\sqrt{4.1}\)= 4
=> ĐPCM
Dấu "=" xảy ra <=> a=b=1
Tk mk nha
Chứng minh:
a) \(a^2+b^2\ge2ab\)
b) \(a^2+b^2+c^2\ge ab+ac+bc\)
c) Cho a, b, c >0. Chứng minh \(a^3+b^3+c^3\ge3abc\). Dấu bằng xảy ra khi nào?
câu a ) chuyển vế => đpcm
câu b) nhân 2 vế vs 2 rồi chuyển vế => đpcm
câu c) chuyển vế pt đa thức thành nhân tử ( cái này lớp 8 đã pt rồi)=> đpcm
Chứng minh:
a) \(a^2+b^2\ge2ab\)
b) \(a^2+b^2+c^2\ge ab+ac+bc\)
c) Cho a, b, c >0. Chứng minh \(a^3+b^3+c^3\ge3abc\). Dấu bằng xảy ra khi nào?
a)Áp dụng BĐT AM-GM ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Xảy ra khi \(a=b\)
b)Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Xảy ra khi \(a=b=c\)
c)Áp dụng BĐT AM-GM ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Xảy ra khi \(a=b=c\)
==" s t nhớ là bất đẳng thức cosi dùng cho số dương nhỉ ?
\(\left(a-b\right)^2\ge0\)
<=>\(a^2-2ab+b^2\ge0\)
<=>\(a^2+b^2\ge2ab\)
b) Ta có\(\left(a-b\right)^2\ge0\)(1)
\(\left(b-c\right)^2\ge0\)(2)
\(\left(a-c\right)^2\ge0\)(3)
Cộng vế với vế ba đẳng thức (1),(2),(3) ta đc
\(a^2+b^2-2ab+b^2+c^2-2bc+a^2+c^2-2ac\ge0\)
<=>\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
<=>\(a^2+b^2+c^2\ge ab+bc+ac\)
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
Cho a>b>0 và ab=1. Chứng minh rằng: \(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Áp dụng giả thiết \(ab=1\) và bất đẳng thức Cauchy ta có:
\(\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=a-b+\dfrac{2}{a-b}\ge2\sqrt{\dfrac{2\left(a-b\right)}{a-b}}=2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab=1\\a-b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
Cho \(a-b>0\) và \(ab=1\).Chứng minh rằng:\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Lời giải:
Áp dụng BĐT Cô-si ta có:
$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$
Ta có đpcm.