Lời giải:
Áp dụng BĐT Cô-si ta có:
$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$
Ta có đpcm.
Lời giải:
Áp dụng BĐT Cô-si ta có:
$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$
Ta có đpcm.
Cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{a}{\sqrt{b^2+\dfrac{bc}{4}+c^2}}+\dfrac{b}{\sqrt{c^2+\dfrac{ca}{4}+a^2}}+\dfrac{c}{\sqrt{a^2+\dfrac{ba}{4}+b^2}}\ge2\)
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Cho a>b>0 và ab =1
Chứng minh : \(\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Hai số a,b thỏa mãn \(\left\{{}\begin{matrix}a,b>0\\\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)\ge4\end{matrix}\right.\)
Chứng minh \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge2\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
cho P=\(\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}\),với a;b>0 và a+b=\(\sqrt{2}\). chứng minh P≥(\(\sqrt{2}+1\))\(^2\)
Cho a>b>0 và ab=1
Chứng minh:\(\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
1/ Cho $$( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!