Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Huy Hoàng
Xem chi tiết
Trần Minh Hoàng
27 tháng 12 2020 lúc 22:46

\(...\Leftrightarrow\dfrac{x+y+1}{6xy}=\dfrac{1}{6}\Leftrightarrow x+y+1=xy\Leftrightarrow\left(x-1\right)\left(y-1\right)=2\Leftrightarrow\left[{}\begin{matrix}x=3;y=2\\x=2;y=3\end{matrix}\right.\)

Trần Minh Hoàng
27 tháng 12 2020 lúc 22:53

Mình biến đổi nhầm. Nhưng theo hướng đó bạn có thể làm cách khác.

Vũ Vân
29 tháng 12 2020 lúc 20:23

Quy đồng mẫu

X+Y=XY-1=a

X và Y và 2 nghiệm dương của pt

X²-ax+a+1

Để pt có nghiệm nguyên thì

Delta phải chính phương 

<=> a²-4a-4=K²<=> -8=(K-a+2).(k+a-2)

Tìm ước dể rồi nhé

 

Vũ Đình Thái
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
17 tháng 8 2023 lúc 13:59

Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))

Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\) 

\(\Leftrightarrow\dfrac{y^2}{4}=1\)

\(\Leftrightarrow y^2=4\)

\(\Leftrightarrow y=\pm2\)

Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)

 

THIÊN ÂN
17 tháng 8 2023 lúc 13:38

a

Tạ Uyên
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 9 2021 lúc 9:18

\(\dfrac{1}{3}< \dfrac{x}{y}< \dfrac{1}{2}\Rightarrow\dfrac{4}{12}< \dfrac{x}{y}< \dfrac{6}{12}\Rightarrow\dfrac{x}{y}=\dfrac{5}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{12}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{12}=\dfrac{2x}{10}=\dfrac{3y}{36}=\dfrac{2x+3y}{10+36}=\dfrac{19}{46}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{46}\\y=\dfrac{114}{23}\end{matrix}\right.\)

Mà \(x,y\in Z\)

Vậy ko có x,y nguyên thỏa mãn đề

Đinh Minh Đức
6 tháng 11 2021 lúc 14:29

khó phết

đấng ys
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 9 2021 lúc 7:10

Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)

\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow x=y=1\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 21:22

Áp dụng BĐT BSC:

\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)

\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)

Trần Vũ Phương Thảo
Xem chi tiết
Akai Haruma
27 tháng 4 2022 lúc 18:09

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

Akai Haruma
27 tháng 4 2022 lúc 18:09

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

Akai Haruma đã xóa
Trần Minh An
27 tháng 4 2022 lúc 23:45

*cách này đơn giản hơn

Vì x,y>0. theo AM-GM:

\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\) ≥\(\dfrac{2}{xy}\) => P≥\(\dfrac{6}{xy}\)

ta có: \(x^2\)+\(y^2\)≥ 2xy <=> (x+y)\(^2\)≥4xy <=> xy≤\(\dfrac{\left(x+y\right)^2}{4}\)=\(\dfrac{1}{4}\)

<=> \(\dfrac{6}{xy}\)\(\)24 hay P≥24

dấu = xảy ra khi: x=y=\(\dfrac{1}{2}\)

Khiêm Nguyễn Gia
Xem chi tiết
Akai Haruma
4 tháng 11 2023 lúc 15:40

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Nếu $x=-y$ thì:

$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$

Nếu $y=-z$ thì:

$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$

Nếu $z=-x$ thì:

$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$

prolaze
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2021 lúc 21:47

Bài 1: 

b) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{13;-7\right\}\)