Tìm x,y nguyên thỏa mãn: \(\dfrac{x}{8}-\dfrac{1}{4}=\dfrac{1}{y}\)
Tìm x, y nguyên dương thỏa mãn:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{6xy}=\dfrac{1}{6}\)
\(...\Leftrightarrow\dfrac{x+y+1}{6xy}=\dfrac{1}{6}\Leftrightarrow x+y+1=xy\Leftrightarrow\left(x-1\right)\left(y-1\right)=2\Leftrightarrow\left[{}\begin{matrix}x=3;y=2\\x=2;y=3\end{matrix}\right.\)
Mình biến đổi nhầm. Nhưng theo hướng đó bạn có thể làm cách khác.
Quy đồng mẫu
X+Y=XY-1=a
X và Y và 2 nghiệm dương của pt
X²-ax+a+1
Để pt có nghiệm nguyên thì
Delta phải chính phương
<=> a²-4a-4=K²<=> -8=(K-a+2).(k+a-2)
Tìm ước dể rồi nhé
Tìm cặp số nguyên (x;y) thỏa mãn :\(1+\dfrac{1}{y+\dfrac{1}{3+\dfrac{1}{x}}}=\dfrac{43}{30}\)
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))
Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow\dfrac{y^2}{4}=1\)
\(\Leftrightarrow y^2=4\)
\(\Leftrightarrow y=\pm2\)
Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)
Tìm các số nguyên x, y thỏa mãn 2x + 3y =19 và \(\dfrac{1}{3}\) < \(\dfrac{x}{y}\)< \(\dfrac{1}{2}\)
\(\dfrac{1}{3}< \dfrac{x}{y}< \dfrac{1}{2}\Rightarrow\dfrac{4}{12}< \dfrac{x}{y}< \dfrac{6}{12}\Rightarrow\dfrac{x}{y}=\dfrac{5}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{12}=\dfrac{2x}{10}=\dfrac{3y}{36}=\dfrac{2x+3y}{10+36}=\dfrac{19}{46}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{46}\\y=\dfrac{114}{23}\end{matrix}\right.\)
Mà \(x,y\in Z\)
Vậy ko có x,y nguyên thỏa mãn đề
cho x,y dương thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}=2\)
tìm Max \(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{y^4+x^2+2yx^2}\)
Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)
\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow x=y=1\)
Cho x,y,z là các số dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). Tìm Max \(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
Áp dụng BĐT BSC:
\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)
\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)
\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)
Cho x,y > 0 thỏa mãn x+y=1 Tìm GTNN của P=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{4}{xy}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
*cách này đơn giản hơn
Vì x,y>0. theo AM-GM:
\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\) ≥\(\dfrac{2}{xy}\) => P≥\(\dfrac{6}{xy}\)
ta có: \(x^2\)+\(y^2\)≥ 2xy <=> (x+y)\(^2\)≥4xy <=> xy≤\(\dfrac{\left(x+y\right)^2}{4}\)=\(\dfrac{1}{4}\)
<=> \(\dfrac{6}{xy}\)≥\(\)24 hay P≥24
dấu = xảy ra khi: x=y=\(\dfrac{1}{2}\)
Cho \(x,y,z\inℝ\) thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức: \(P=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$
$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$
$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$
$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$
$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y)(y+z)(x+z)=0$
$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$
Nếu $x=-y$ thì:
$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$
Nếu $y=-z$ thì:
$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$
Nếu $z=-x$ thì:
$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)