Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Vũ Phương Thảo

Cho x,y > 0 thỏa mãn x+y=1 Tìm GTNN của P=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{4}{xy}\)

Akai Haruma
27 tháng 4 2022 lúc 18:09

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

Akai Haruma
27 tháng 4 2022 lúc 18:09

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

Akai Haruma đã xóa
Trần Minh An
27 tháng 4 2022 lúc 23:45

*cách này đơn giản hơn

Vì x,y>0. theo AM-GM:

\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\) ≥\(\dfrac{2}{xy}\) => P≥\(\dfrac{6}{xy}\)

ta có: \(x^2\)+\(y^2\)≥ 2xy <=> (x+y)\(^2\)≥4xy <=> xy≤\(\dfrac{\left(x+y\right)^2}{4}\)=\(\dfrac{1}{4}\)

<=> \(\dfrac{6}{xy}\)\(\)24 hay P≥24

dấu = xảy ra khi: x=y=\(\dfrac{1}{2}\)


Các câu hỏi tương tự
Phạm Phương Linh
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
Hiếu Minh
Xem chi tiết
Useless people
Xem chi tiết
Ashley
Xem chi tiết
Vũ Thành Hưng
Xem chi tiết
Hồ Lê Thiên Đức
Xem chi tiết
Vũ Thành Hưng
Xem chi tiết
Vô danh
Xem chi tiết