tính giá trị của biểu thức:
a) A= \(2\dfrac{1}{3}\)+\(\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+2,5\)
Tính giá trị biểu thức
a, \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12}\) b,\(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
c, \(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\) d, \(\left[6+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{1}{2}\right|\right]:\dfrac{3}{12}\)
a) \(=\dfrac{157}{8}.\dfrac{12}{7}-\dfrac{61}{4}.\dfrac{12}{7}=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)=\dfrac{12}{7}.\dfrac{35}{8}=\dfrac{15}{2}\)
b) \(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}\div\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}.5=\dfrac{1}{3}.1-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c) \(=-\dfrac{80}{9}\)
a.=\(\dfrac{157}{8}:\dfrac{7}{12}-\dfrac{61}{4}:\dfrac{7}{12}=\dfrac{471}{14}-\dfrac{183}{7}=\dfrac{15}{2}\)
b.=\(\dfrac{2}{15}-\dfrac{2}{3}+\dfrac{1}{5}=-\dfrac{1}{3}\)
c.\(\left(\dfrac{10}{3}+2.5\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}=\dfrac{35}{6}:\left(-\dfrac{31}{30}\right)-\dfrac{11}{31}=-\dfrac{175}{31}-\dfrac{11}{31}=-6\)
d.\(\left[6+\dfrac{1}{8}-\dfrac{1}{2}\right]:\dfrac{3}{12}=\dfrac{45}{8}:\dfrac{3}{12}=\dfrac{45}{2}\)
Tính giá trị của biểu thức sau:
\(\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2\)
\(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.4=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{5}{56}\)
\(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
Tính giá trị biểu thức:
a) \(\dfrac{2}{3}\)x2y + 3x2y + x2y tại x= 3, y= \(-\dfrac{1}{7}\)
a: A=x^2y(2/3+3+1)=14/3*x^2y
=14/3*3^2*(-1/7)
=-2*3=-6
Tính giá trị của biểu thức sau (kết quả để dưới dạng phân số tối giản)
a,A=\(\dfrac{1}{3^2-1}\)+\(\dfrac{1}{5^2-1}\)+\(\dfrac{1}{7^2-1}\)+. . .+\(\dfrac{1}{99^2-1}\)
b,B=\(\dfrac{1}{1^2+3^2-4^2}\)+\(\dfrac{1}{3^2+5^2-8^2}\)+\(\dfrac{1}{5^2+7^2-12^2}\)+. . .+\(\dfrac{1}{99^2+101^2-200^2}\)
a: \(A=\dfrac{1}{\left(3-1\right)\left(3+1\right)}+\dfrac{1}{\left(5-1\right)\left(5+1\right)}+...+\dfrac{1}{\left(99-1\right)\left(99+1\right)}\)
\(=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{49}{100}=\dfrac{49}{200}\)
tính giá trị biểu thức \(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}.\dfrac{12}{7}\)
\(=\dfrac{2}{3}+\dfrac{7.3.2.2}{3.7.3.2.3}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
TICK CHO MÌNH NHÉ
Giải:
\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\) . (\(-\dfrac{4}{9}\) + \(\dfrac{5}{6}\) ) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(^{\dfrac{1}{3}}\) . \(\dfrac{7}{18}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{7}{54}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{9}\)
= \(\dfrac{8}{9}\)
2 /3 + 1/ 3 . ( − 4 9 + 5 6 ) : 7 /12
= 2/ 3 + 1 /3 . 7 /18 . 12/ 7
= 2/ 3 + 7 /48 . 12 /7
= 2/ 3 + 1/ 4
= 11/ 12
Tính giá trị các biểu thức sau:
a) \(\dfrac{2}{3}\)+\(\dfrac{1}{3}\).(\(\dfrac{-4}{9}\)+\(\dfrac{5}{6}\)):\(\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{7}{18}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
Tính giá trị của biểu thức:
A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)
\(\Rightarrow2A-A=2-\dfrac{1}{2^{2012}}\)
\(\Rightarrow A=2-\dfrac{1}{2^{2012}}\)
\(A= 1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\)\(\dfrac{1}{2^{2012}}\)
⇒\(2A=2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\)
⇒\(2A-A=(2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\))\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)
⇒\(A=2-\)\(\dfrac{1}{2^{2012}}\)
Tính giá trị của biểu thức:
\(A=\dfrac{-3}{7}.\dfrac{5}{9}+\dfrac{4}{9}.\dfrac{-3}{7}+\left(-2022\right)^0\)
\(B=0,75-\left(2\dfrac{1}{3}+0,75\right)+3^2.\left(-\dfrac{1}{9}\right)\)
\(C=2\dfrac{6}{7}.\left[\left(\dfrac{-7}{5}-\dfrac{3}{2}:\dfrac{-5}{-4}\right)+\left(\dfrac{3}{2}\right)^2\right]\)
\(D=\dfrac{2}{7}+\dfrac{5}{7}.\left(\dfrac{3}{5}-0,25\right).\left(-2\right)^2+35\%\)
\(E=1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+25\%\right):1\dfrac{2}{5}\)
\(F=\dfrac{\dfrac{5}{3}-\dfrac{5}{7}+\dfrac{5}{9}}{\dfrac{10}{3}-\dfrac{10}{7}+\dfrac{10}{9}}\)
\(a.19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12} b.\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
c.\(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-\left(4\dfrac{1}{5}\right)\right)-\dfrac{11}{31}\)
1.Tính giái trị biểu thức
a: \(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\)
\(=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{122}{8}\right)\)
\(=\dfrac{12}{7}\cdot\dfrac{35}{8}=5\cdot\dfrac{3}{2}=\dfrac{15}{2}\)
b: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}\)
\(=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c: \(=\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}\)
\(=\dfrac{35}{6}:\dfrac{-31}{30}-\dfrac{11}{31}\)
\(=\dfrac{35}{6}\cdot\dfrac{30}{-31}-\dfrac{11}{31}\)
\(=\dfrac{-35\cdot5-11}{31}=\dfrac{-186}{31}=-6\)