Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Cao Thị Hương Giang
10 tháng 2 2021 lúc 10:00

a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)

d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)

 

Hobiee
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2023 lúc 21:24

a: \(\lim\limits\dfrac{5n+1}{2n}=\lim\limits\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=\lim\limits\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5+0}{2}=\dfrac{5}{2}\)

b: \(\lim\limits\dfrac{6n^2+8n+1}{5n^2+3}\)

\(=\lim\limits\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}\)

\(=\lim\limits\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}\)

\(=\dfrac{6+0+0}{5+0}=\dfrac{6}{5}\)

c: \(\lim\limits\dfrac{3^n+2^n}{4\cdot3^n}\)

\(=\lim\limits\dfrac{\dfrac{3^n}{3^n}+\left(\dfrac{2}{3}\right)^n}{4\cdot\left(\dfrac{3^n}{3^n}\right)}\)

\(=\lim\limits\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1+0}{4}=\dfrac{1}{4}\)

d: \(\lim\limits\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)

\(=\lim\limits\dfrac{\sqrt{\dfrac{n^2}{n^2}+\dfrac{5n}{n^2}+\dfrac{3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}\)

\(=\lim\limits\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}\)

\(=\dfrac{\sqrt{1+0+0}}{6}=\dfrac{1}{6}\)

@DanHee
4 tháng 11 2023 lúc 21:24

\(a,lim\dfrac{5n+1}{2n}=lim\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=lim\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5}{2}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)

\(c,lim\dfrac{3^n+2^n}{4.3^n}=\dfrac{\dfrac{3^n}{3^n}+\dfrac{2^n}{3^n}}{\dfrac{4.3^n}{3^n}}=\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)

\(d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{\sqrt{\dfrac{n^2+5n+3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)

Trên con đường thành côn...
4 tháng 11 2023 lúc 21:28

\(a\text{)}lim\dfrac{5n+1}{2n}=lim\dfrac{5}{2}+lim\dfrac{1}{2n}=\dfrac{5}{2}\)

\(b\text{)}lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)

\(c\text{)}lim\dfrac{3^n+2^n}{4.3^n}=lim\dfrac{\left(\dfrac{3}{3}\right)^n+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)

\(d\text{)}lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{n\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{n\left(6+\dfrac{2}{n}\right)}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)

Vũ Gia Linh
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
28 tháng 6 2023 lúc 11:08

`@` `\text {Ans}`

`\downarrow`

`a)`

\(2^{n+3}\cdot5^{n+3}=20^9\div2^9\)

`=>`\(\left(2\cdot5\right)^{n+3}=\left(20\div2\right)^9\)

`=>`\(10^{n+3}=10^9\)

`=>`\(n+3=9\)

`=> n = 9 - 3`

`=> n= 6`

Vậy, `n=6`

`b)`

\(3^{n+5}-3^{n+4}=1458\)

`=> 3^n*3^5 - 3^n*3^4 = 1458`

`=> 3^n*(3^5 - 3^4) = 1458`

`=> 3^n*162 = 1458`

`=> 3^n = 1458 \div 162`

`=> 3^n = 9`

`=> 3^n = 3^2`

`=> n=2`

Vậy, `n=2.`

`c)`

\(5^{n+3}+5^{n+2}=3750\)

`=> 5^n*5^3 + 5^n*5^2 = 3750`

`=> 5^n*(5^3+5^2) = 3750`

`=> 5^n*150 = 3750`

`=> 5^n = 3750 \div 150`

`=> 5^n =25`

`=> 5^n = 5^2`

`=> n=2`

Vậy, `n=2.`

`d)`

\(\dfrac{2}{7}x+\dfrac{3}{14}x=\dfrac{1}{2}\)

`=> 1/2x = 1/2`

`=> x = 1/2 \div 1/2`

`=> x=1`

Vậy, `x=1`

`e)`

\(\dfrac{x+2}{-3}=\dfrac{-2}{x+3}\)

`=> (x+2)(x+3) = -3*(-2)`

`=> (x+2)(x+3) = -6`

`=> x(x+3) + 2(x+3) = -6`

`=> x^2 + 3x + 2x + 6 = -6`

`=> x^2 + 5x + 6 - 6 = 0`

`=> x^2 + 5x = 0`

`=> x(x+5) = 0`

`=>`\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy, `x \in {0; -5}`

`@` `\text {Kaizuu lv u}`

Đừng gọi tôi là Jung Hae...
Xem chi tiết
Minh Hiếu
11 tháng 2 2022 lúc 5:39

\(a,lim\dfrac{2n+1}{-3n+2}\)

\(=lim\dfrac{2+\dfrac{1}{n}}{-3+\dfrac{2}{n}}=-\dfrac{2}{3}\)

\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)

\(=lim\dfrac{5-\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\dfrac{1}{n^2}-2}=\dfrac{5}{-2}\)

ánh tuyết nguyễn
Xem chi tiết
2611
8 tháng 1 2023 lúc 14:37

`a)lim[2n^2+5]/[-3n^2-3]`

`=lim[2+5/[n^2]]/[-3-3/[n^2]]`

`=2/[-3]=-2/3`

`b)lim(-5n^3-2n^2+5n-6)`

`=lim n^3(-5-2/n+5/[n^2]-6/[n^3])`

Vì `{:(lim n^3=+oo),(lim (-5-2/n+5/[n^2]-6/[n^3])=-5):}}=>lim n^3(-5-2/n+5/[n^2]-6/[n^3])=-oo`

đoàn ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2021 lúc 13:22

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

Dương thị bầu
15 tháng 3 2022 lúc 20:57

Lim 3.4n-2.13n/5n+6.13n

títtt
Xem chi tiết
nguyễn thị hương giang
14 tháng 10 2023 lúc 20:14

loading...  

An Bùi
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 0:43

\(a=\lim\dfrac{5n\left(n+\sqrt{n^2-n-1}\right)}{n+1}=\lim\dfrac{5\left(n+\sqrt{n^2-n-1}\right)}{1+\dfrac{1}{n}}=\dfrac{+\infty}{1}=+\infty\)

\(b=\lim\dfrac{\sqrt{\dfrac{1}{n}+\sqrt{\dfrac{1}{n^3}+\dfrac{1}{n^4}}}}{1-\dfrac{1}{\sqrt{n}}}=\dfrac{0}{1}=0\)

\(c=\lim\dfrac{\sqrt{2n^2-1+\dfrac{7}{n^2}}}{3+\dfrac{5}{n}}=\dfrac{+\infty}{3}=+\infty\)

\(d=\lim\dfrac{\sqrt{3+\dfrac{2}{n}}-1}{3-\dfrac{2}{n}}=\dfrac{\sqrt{3}-1}{3}\)