Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhan Thanh
Xem chi tiết
Edogawa Conan
12 tháng 7 2021 lúc 20:59

Bài 1.

Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)

\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)   (1)

Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)

\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)

\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)          (2)

Cộng vế với vế của (1) và (2) ta có:

\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)

\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 20:42

Bài 2: 

Ta có: (2a+1)(2b+1)=9

nên \(2b+1=\dfrac{9}{2a+1}\)

\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)

\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)

\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)

Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)

\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)

\(=\dfrac{3+2a+1}{3a+6}\)

\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)

trần vũ hoàng phúc
Xem chi tiết
Toru
2 tháng 12 2023 lúc 21:23

Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)

Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\) 

\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\)

\(\Rightarrow a=b+3\)

Thay \(a=b+3\) vào (1), ta được:

\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)

\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)

\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)

\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)

\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)

\(=2060\)

$\Rightarrow$ Chọn đáp án $C$.

Nguyễn thành Đạt
2 tháng 12 2023 lúc 21:28

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)

\(\Rightarrow a-b=3\)

Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)

\(=a^3+a^2-b^3+b^2-11ab+2024\)

\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)

\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)

\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)

\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)

\(=3^3+3^2+2024\)

\(=2060\)

\(\Rightarrow C\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 3 2021 lúc 13:21

\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)

\(\Rightarrow a-b+c=-3\)

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)

\(\Rightarrow3a+3b=0\Rightarrow a=-b\)

\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)

\(\Rightarrow A=0\)

Phan Nghĩa
Xem chi tiết
Xyz OLM
25 tháng 8 2020 lúc 8:41

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3 

Khách vãng lai đã xóa
💥Hoàng Thị Diệu Thùy 💦
Xem chi tiết
nguyễn tuấn thảo
25 tháng 8 2019 lúc 15:39

Ta có : a + b + c = 6

=> ( a + b + c ) ^ 2 = 6 ^ 2 = 36

=> a ^ 2 + b ^ 2 + c ^ 2 + 2 x ( ab + bc + ca ) = 36

=> 12 + 2 x ( ab + bc + ca ) = 36 ( vì a ^ 2 + b ^ 2 + c ^ 2 = 12 )

=> 2 x ( ab + bc + ca ) = 36 - 12

=> 2 x ( ab + bc + ca ) = 24

=> ab + bc + ca = 12

Do đó ab + bc + ca = a ^ 2 + b ^ 2 + c ^ 2

=> a = b = c = 2 ( vì a + b + c = 6 )

Khi đó : P = ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020

=> P = ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020

=> P = 1 + 1 + 1 = 3

Vậy P = 3

💥Hoàng Thị Diệu Thùy 💦
25 tháng 8 2019 lúc 18:48

Cách 2:

Ta có: \(a^2+b^2+c^2=12\)

\(\Rightarrow a^2+b^2+c^2-12=0\)

\(\Rightarrow a^2+b^2+c^2-24+12=0\)

\(\Rightarrow a^2+b^2+c^2-4\left(a+b+c\right)+12=0\)(Vì a+b+c=6)

\(\Rightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\Rightarrow a=b=c=2\)

Thay a=b=c=2 vào P, ta có:

\(P=\left(2-3\right)^{2020}+\left(2-3\right)^{2020}+\left(2-3\right)^{2020}\)

\(=1+1+1=3\)

P/s: Bài bạn nguyễn tuấn thảo  , chỗ để suy ra a=b=c=2 lm tắt quá nhé :))

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 21:20

Bài 1:

\(HPT\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Leftrightarrow a^2+b^2+c^2=0\\ \Leftrightarrow a=b=c=0\left(a^2+b^2+c^2\ge0\right)\\ \Leftrightarrow A=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1+1-1=-1\)

Bài 2: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Bài 3: Xác định a, b, c để x^3 - ax^2 + bx - c = (x - a) (x-b)(x-c) - Lê Tường Vy

Đăng Trần Hải
Xem chi tiết

làm cái đề ra ấy, ngại viết lại đề :P

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)

Khách vãng lai đã xóa
Nguyễn Hữu Huy
Xem chi tiết
Linh nè
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
1 tháng 1 2019 lúc 9:12

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\).

\(\Rightarrow a=b+3\)

Thế vào A ta được :

\(A=\left(b+3\right)^2\left(b+4\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017\)

\(=b^3+10b^2+33b+36-b^3+b^2-11b^2-33b+2017\)

\(=2053\)

tran nguyen bao quan
1 tháng 1 2019 lúc 9:15

\(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}=\sqrt{9+2.3.2\sqrt{5}+20}-2\sqrt{5}=\sqrt{3^2+2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}-2\sqrt{5}=\sqrt{\left(3+2\sqrt{5}\right)^2}-2\sqrt{5}=3+2\sqrt{5}-2\sqrt{5}=3\Leftrightarrow a=b+3\)

A=\(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2017=\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2017=b^3+4b^2+6b^2+24b+9b+36-b^3+b^2-11b^2-33b+2017=b^3+10b^2+9b+33b-b^3-10b^2-33b+2053=2053\Leftrightarrow A=2053\)