Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(=2\sqrt{5}+3-2\sqrt{5}\)
\(=3\).
\(\Rightarrow a=b+3\)
Thế vào A ta được :
\(A=\left(b+3\right)^2\left(b+4\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017\)
\(=b^3+10b^2+33b+36-b^3+b^2-11b^2-33b+2017\)
\(=2053\)
\(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}=\sqrt{9+2.3.2\sqrt{5}+20}-2\sqrt{5}=\sqrt{3^2+2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}-2\sqrt{5}=\sqrt{\left(3+2\sqrt{5}\right)^2}-2\sqrt{5}=3+2\sqrt{5}-2\sqrt{5}=3\Leftrightarrow a=b+3\)
A=\(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2017=\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2017=b^3+4b^2+6b^2+24b+9b+36-b^3+b^2-11b^2-33b+2017=b^3+10b^2+9b+33b-b^3-10b^2-33b+2053=2053\Leftrightarrow A=2053\)