Cho tứ diện đều ABCD. Tính góc giữa hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\)
Cho tứ diện đều ABCD. Gọi M,N,P lần lượt là trung điểm AB,CB,AD, G là trọng tâm tam giác BCD. Tính góc giữa \(\overrightarrow{MG}\) và \(\overrightarrow{NP}\)
Hướng dẫn (khuya quá rồi).
Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)
\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)
Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)
Cho ABCD là hình bình hành (Hình 52). So sánh:
a) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).
b) Vecto tổng \(\overrightarrow {AB} + \overrightarrow {AD} \) và vecto \(\overrightarrow {AC} \)
a) Ta có: \(\left\{ \begin{array}{l}AD//BC\\AD = BC\end{array} \right.\) (do tứ giác ABCD là hình bình hành)
\( \Rightarrow \overrightarrow {AD} = \overrightarrow {BC} \)
b) Ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Cho vecto \(\overrightarrow {AB} = \overrightarrow a \). Hãy xác định điểm C sao cho \(\overrightarrow {BC} = \overrightarrow a \)
a) Tìm mối quan hệ giữa \(\overrightarrow {AB} \) và \(\overrightarrow a + \overrightarrow a \)
b) Vecto \(\overrightarrow a + \overrightarrow a \) có mối quan hệ như thế nào về hướng và độ dài đối với vecto \(\overrightarrow a \)
Tham khảo:
Gọi M, N lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).
Từ B, M, N ta dựng hình bình hành BMNC.
Khi đó: \(\overrightarrow {MN} = \overrightarrow {BC} \) hay \(\overrightarrow a = \overrightarrow {BC} \).
\( \Rightarrow \overrightarrow a + \overrightarrow a = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
a) Vì \(\overrightarrow {AB} = \overrightarrow a = \overrightarrow {BC} \) nên A, B, C thẳng hàng và B là trung điểm của AC.
Vậy \(\overrightarrow a + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)
b) Ta có: \(\overrightarrow a + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)
Mà \(\overrightarrow {AB} = \overrightarrow a \) nên: \(\overrightarrow a + \overrightarrow a \) và \(\overrightarrow a \) cùng hướng, \(\left| {\overrightarrow a + \overrightarrow a } \right| = 2.\left| {\overrightarrow a } \right|\).
cho tứ diện đều abcd có cạnh bằng a. tính \(\overrightarrow{AB}.\overrightarrow{BD}\)
\(\overrightarrow{AB}.\overrightarrow{BD}=-\overrightarrow{BA}.\overrightarrow{BD}=-a.a.cos60^0=-\dfrac{a^2}{2}\)
Cho hình tứ diện ABCD
a) Chứng minh hệ thức : \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0\)
b) Từ hệ thức hãy suy ra định lí :
"Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện tứ ba cũng vuông góc với nhau"
Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Hãy biểu thị \(\overrightarrow {AM} \) theo hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).
Từ M kẻ đường thẳng song song với AB, cắt AD tại E.
Khi đó tứ giác ABME là hình bình hành.
Do đó: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AE} \).
Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)
\( \Rightarrow \overrightarrow {AE} = \frac{1}{2}\overrightarrow {AD} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Vậy \(\overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Chú ý khi giải
+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.
Cho hình thang ABCD có \(\overrightarrow{2AB}=\overrightarrow{DC}\),AC=8,BD=6,góc tạo bởi 2 vecto \(\overrightarrow{AC}\) và \(\overrightarrow{BD}\) bằng 120.Tính độ dài các cạnh AD,BC
Cho hình vuông ABCD có cạnh = 6a
a) tính độ dài các vecto sau \(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{AC}\) ; \(\overrightarrow{v}=\overrightarrow{BC}+\overrightarrow{BD}\)
b) tính các tích vô hương sau : \(\overrightarrow{AB}.\overrightarrow{AC}\); \(\overrightarrow{BD}.\overrightarrow{AC}\);\(\overrightarrow{AB}.\overrightarrow{CD}\)
a: AB=BC=CD=DA=6a
\(AC=BD=\sqrt{\left(6a\right)^2+\left(6a\right)^2}=6a\sqrt{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=6a\)
\(\left|\overrightarrow{BC}+\overrightarrow{BD}\right|=\sqrt{BC^2+BD^2+2\cdot BC\cdot BD\cdot cos45}\)
\(=\sqrt{36a^2+72a^2+\sqrt{2}\cdot6a\cdot6a\sqrt{2}}\)
\(=6a\sqrt{5}\)
b: \(\overrightarrow{AB}\cdot\overrightarrow{AC}=AB\cdot AC\cdot cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=6a\cdot6a\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}\)
\(=36a^2\)
Trong không gian Oxyz, cho hai vecto\(\overrightarrow{a}\) và \(\overrightarrow{b}\) thỏa |\(\overrightarrow{a}\)| =2; |\(\overrightarrow{b}\)|=1; (\(\overrightarrow{a}\),\(\overrightarrow{b}\))=\(\dfrac{\pi}{3}\). Góc giữa vecto \(\overrightarrow{b}\) và vecto \(\overrightarrow{a}\)-\(\overrightarrow{b}\) bằng
\(cos\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=\dfrac{\overrightarrow{b}\left(\overrightarrow{a}-\overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|.\left|\overrightarrow{a}-\overrightarrow{b}\right|}=\dfrac{\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{b}^2}{1.\sqrt{3}}=\dfrac{2.1.cos\dfrac{\pi}{3}-1^2}{\sqrt{3}}=0\)
\(\Rightarrow\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=90^0\)