Bài 1: Vectơ trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
B.Trâm

Cho tứ diện đều ABCD. Gọi M,N,P lần lượt là trung điểm AB,CB,AD, G là trọng tâm tam giác BCD. Tính góc giữa \(\overrightarrow{MG}\) và \(\overrightarrow{NP}\)

Nguyễn Việt Lâm
5 tháng 2 2021 lúc 2:04

Hướng dẫn (khuya quá rồi).

Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)

\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)

Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)


Các câu hỏi tương tự
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Julian Edward
Xem chi tiết
Bao Phat
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết