Trong không gian Oxyz, cho hai vecto\(\overrightarrow{a}\) và \(\overrightarrow{b}\) thỏa |\(\overrightarrow{a}\)| =2; |\(\overrightarrow{b}\)|=1; (\(\overrightarrow{a}\),\(\overrightarrow{b}\))=\(\dfrac{\pi}{3}\). Góc giữa vecto \(\overrightarrow{b}\) và vecto \(\overrightarrow{a}\)-\(\overrightarrow{b}\) bằng
\(cos\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=\dfrac{\overrightarrow{b}\left(\overrightarrow{a}-\overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|.\left|\overrightarrow{a}-\overrightarrow{b}\right|}=\dfrac{\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{b}^2}{1.\sqrt{3}}=\dfrac{2.1.cos\dfrac{\pi}{3}-1^2}{\sqrt{3}}=0\)
\(\Rightarrow\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=90^0\)