Cho △ ABC có B=C, kẻ BH ⊥ AC,CK ⊥ AK
a)CM ΔBHC = ΔCKB
b)CM ΔABH = ΔACK
giúp tớ nha
1. Cho tam giác ABC có AB=AC. Kẻ BH vuông góc với AC;CK vuông góc với AB
a. CM : AH=AK
b. CM: góc KBC = góc HCB
c. Gọi O là giao điểm của BH và CK. CM: OB=OC
d. CM: KH//BC
Cho ΔABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh ΔABM = ΔACM
b)Lấy H thuộc tia đối của BM, K thuộc tia đối CM sao cho BH = CK. Chứng minh ΔABH = ΔACK
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
=> tam giác ABM = tam giác ACM (c.c.c)
Hình tự vẽ nha!
a, Vì tam giác ABC cân tại A
\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) (t/c)
Xét tam giác BHC và tam giác CKB có:
\(\widehat{BCH}=\widehat{CBK}\) (cmt)
\(\widehat{CKB}=\widehat{BHC}=90^o\) (CK và BH là 2 đường cao của tam giác ABC)
BC chung
\(\Rightarrow\) \(\Delta\)BHC = \(\Delta\)CKB (cạnh huyền - góc nhọn)
b, Vì \(\Delta\)BHC = \(\Delta\)CKB (cma)
\(\Rightarrow\) CK = BH (2 cạnh tương ứng)
c, Vì \(\Delta\)BHC = \(\Delta\)CKB (cma)
\(\Rightarrow\) \(\widehat{HBC}=\widehat{KCB}\) (2 góc tương ứng)
Xét tam giác IBC có: \(\widehat{IBC}=\widehat{ICB}\) (cmt)
\(\Rightarrow\) \(\Delta\)IBC cân tại I (định lý tam giác cân)
Chúc bn học tốt!
Cho tam giác ABC vuông tại A (AB>AC), đường trung tuyến AO. Trên tia đối của OA lấy điểm D sao cho OD=OA.
a) Cm ABDc là hình chữ nhật.
b) Từ B kẻ BH vuông góc với AD tại H, từ C kẻ CK vuông góc với AD tại K. Cm BH=Ck và BK // CH.
c)Tia BH cắt CD ở M, tia CK cắt AB ở N. Cm: Ba điểm M,N,O thẳng hàng.
d) Trên tia đối của tia BH lấy điểm E sao cho BE=AD. Cm góc DEC=45 độ.
GIÚP TỚ VỚI
a: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔOHB vuông tại H và ΔOKC vuông tại K có
OB=OC
\(\widehat{HOB}=\widehat{KOC}\)
Do đoΔOHB=ΔOKC
Suyy ra: HB=KC
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đo: BHCK là hình bình hành
Suy ra: BK//CH
Cho tam giác ABC có AB= AC. Trên tia đối của BC lấy M, trên tia đối của CD lấy N sao cho BM= CN
a) CM AM= AN
b) Kẻ BH vuông góc với AM, CK cuông góc với AN( H thuộc AM, K thuộc AN). CM BH= CK
c) CM AH= AK
Cho ΔABC có AB=AC (góc A nhọn). Kẻ BH vuông góc với (H∈AC), kẻ CK vuông góc với AB(K∈AB); BH cắt CK tại I
A) CM: BH=CK
b)CM: ΔIBK=ΔICH. So sánh IK và IC
c) Gọi M là trung điểm của BC. CM: A,I,M thẳng hàng
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC (H∈AC), kẻ CK vuông góc với AB (K ∈ AB)
a, CM: AH = AK
b, Gọi I là giao điểm của BH và CK. CM AI là trung trực của HK
c, Kẻ Bx vuông góc với AB tại B, gọi E là giao điểm của Bx với AC, CM BC là phân giác của góc HBE
d, So sánh CH với CE
kẻ hình với làm giúp mình với ạ
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
Cho tam giác ABC vuông tại A có AB = AC. Lấy điểm E trên BC (E khác B,C). Kẻ BH, CK vuông góc với AE (H,K thuộc AE). Biết BH = 3 cm. Tính AK ?
cm :
góc CAK+góc BAK=góc BAC=90 độ
góc CAK+góc ACK=90 độ
=>góc BAK=góc ACK (=90 độ- góc CAK)
hay góc BAH=góc ACK
xét tam giác AHB và tam giác CKA có
góc BAH=góc ACK
AB=AC (gt)
góc AHB= góc AKC (=90 độ)
=>tam giác AHB=tam giác CKA (ch-gn)
=>HB=AK=3cm
câu trả lời của bạn thật là "trách nhiệm"
Cho tam giác abc cân tại a, kẻ bh vuông góc với ac, kẻ ck vuông góc với ab. cm
a, Tam giác abh = tam giác ack
b, bh = ck